The Minimum Label Spanning Tree Problem: Illustrating the Power and Flexibility of Genetic Algorithms

Yupei Xiong, Univ. of Maryland
Bruce Golden, Univ. of Maryland
Edward Wasil, American Univ.

Presented in the Dept. of Civil & Environmental Engineering, Univ. of Maryland
Distinguished Speaker Series, April 2006
Outline of Lecture

- 10 - Minute Introduction to Graph Theory and Complexity
- Introduction to the MLST Problem
- A GA for the MLST Problem
- Four Modified Versions of the Benchmark Heuristic
- A Modified Genetic Algorithm
- Results and Conclusions
Defining Trees

- A graph with no cycles is *acyclic*
- A *tree* is a connected acyclic graph

Some examples of trees

- A *spanning tree* of a graph G contains all the nodes of G
Spanning Trees

Graph G

A spanning tree of G

Another spanning tree of G
A network problem for which there is a simple solution method is the selection of a minimum spanning tree from an undirected network over \(n \) cities.

- The cost of installing a communication link between cities \(i \) and \(j \) is \(c_{ij} = c_{ji} \geq 0 \).
- Each city must be connected, directly or indirectly, to all others, and this is to be done at minimum total cost.
- Attention can be confined to trees, because if the network contains a cycle, removing one link of the cycle leaves the network connected and reduces cost.
A Minimal Spanning Tree

Original Network

Minimum Spanning Tree
The Traveling Salesman Problem

- Imagine a suburban college campus with 140 separate buildings scattered over 800 acres of land
- To promote safety, a security guard must inspect each building every evening
- The goal is to sequence the 140 buildings so that the total time (travel time plus inspection time) is minimized
- This is an example of the well-known TSP

Original problem

Possible solution
Analysis of Algorithms

- **Definitions**
 - Algorithm- method for solving a class of problems on a computer
 - Optimal algorithm – verifiable optimal solution
 - Heuristic algorithm – feasible solution

- **Performance Measures**
 - Number of basic computations / Running time
 - Computational effort
 - Problem size
 - Player one
 - Player two
Computational Effort as a Function of Problem Size

Problem size

Computational effort

- n
- $n \log_2 n$
- n^2
- n^3
- 2^n

Problem size

Computational effort
Good vs. Bad Algorithms

- Terminology

 - Researchers have emphasized the importance of finding polynomial time algorithms, by referring to all such polynomial algorithms as inherently good.
 - Algorithms that are not polynomially bounded, are labeled inherently bad.

- Good Optimal Algorithms Exist for these Problems

 - Transportation problem
 - Minimal spanning tree problem
 - Shortest path problem
 - Linear programming
High Quality Heuristic Algorithms

- Good Optimal Algorithms Don’t Exist for these Problems
 - Traveling salesman problem (TSP)
 - Minimum label spanning tree problem (MLST)
- Why Focus on Heuristic Algorithms?
 - For the above problems, optimal algorithms are not practical
 - Efficient, near optimal heuristics are needed to solve real-world problems
 - The key is to find fast, high-quality heuristic algorithms
A disconnected graph consists of two or more connected graphs.

Each of these connected subgraphs is called a component.

A disconnected graph with two components.
Introduction

- The Minimum Label Spanning Tree (MLST) Problem

 - Communications network design
 - Edges may be of different types or media (e.g., fiber optics, cable, microwave, telephone lines, etc.)
 - Each edge type is denoted by a unique letter or color
 - Construct a spanning tree that minimizes the number of colors
Introduction

- A Small Example

Input

Solution
Where did we start?

- Proposed by Chang & Leu (1997)
- The MLST Problem is NP-hard
- Several heuristics had been proposed
- One of these, MVCA (maximum vertex covering algorithm), was very fast and effective
- Worst-case bounds for MVCA had been obtained
Literature Review

- An optimal algorithm (using backtrack search) had been proposed

- On small problems, MVCA consistently obtained nearly optimal solutions

- A description of MVCA follows
Description of MVCA

0. Input: $G (V, E, L)$.

1. Let $C \leftarrow \{ \}$ be the set of used labels.

2. repeat

3. Let H be the subgraph of G restricted to V and edges with labels from C.

4. for all $i \in L - C$ do

5. Determine the number of connected components when inserting all edges with label i in H.

6. end for

7. Choose label i with the smallest resulting number of components and do: $C \leftarrow C \cup \{i\}$.

8. Until H is connected.
How MVCA Works

Input

Intermediate Solution

Solution
Worst-Case Results

\[
\frac{\text{MVCA}}{\text{OPT}} \leq 1 + 2 \ln n
\]

\[
\frac{\text{MVCA}}{\text{OPT}} \leq 1 + \ln(n - 1)
\]

\[
\frac{\text{MVCA}}{\text{OPT}} \leq H_b = \sum_{i=1}^{b} \frac{1}{i} < 1 + \ln b
\]

where \(b = \text{max label frequency} \), and
\(H_b = b^{\text{th}} \text{ harmonic number} \)
Some Observations

- The Xiong, Golden, Wasil worst-case bound is tight
- Unlike the MST, where we focus on the edges, here it makes sense to focus on the labels or colors
- Next, we present a genetic algorithm (GA) for the MLST problem
Genetic Algorithm: Overview

- Randomly choose \(p \) solutions to serve as the initial population.

- Suppose \(s[0], s[1], \ldots, s[p-1] \) are the individuals (solutions) in generation 0.

- Build generation \(k \) from generation \(k-1 \) as below:

 For each \(j \) between 0 and \(p-1 \), do:

 \[
 t[j] = \text{crossover} \{ s[j], s[(j+k) \mod p] \}
 \]

 \[
 t[j] = \text{mutation} \{ t[j] \}
 \]

 \[
 s[j] = \text{the better solution of} \ s[j] \text{ and } t[j]
 \]

 End For

- Run until generation \(p-1 \) and output the best solution from the final generation.
Crossover Schematic (p = 4)

Generation 0

Generation 1

Generation 2

Generation 3

Crossover

- Given two solutions $s[1]$ and $s[2]$, find the child $T = \text{crossover} \{ s[1], s[2] \}$

- Define each solution by its labels or colors

- Description of Crossover

 a. Let $S = s[1] \cup s[2]$ and T be the empty set

 b. Sort S in decreasing order of the frequency of labels in G

 c. Add labels of S, from the first to the last, to T until T represents a feasible solution

 d. Output T
An Example of Crossover

\[s[1] = \{ a, b, d \} \]

\[s[2] = \{ a, c, d \} \]

\[T = \{ \} \]

\[S = \{ a, b, c, d \} \]

Ordering: a, b, c, d
An Example of Crossover

\[T = \{ a \} \]

\[T = \{ a, b \} \]

\[T = \{ a, b, c \} \]
Mutation

- Given a solution S, find a mutation T

- Description of Mutation

 a. Randomly select c not in S and let $T = S \cup c$

 b. Sort T in decreasing order of the frequency of the labels in G

 c. From the last label on the above list to the first, try to remove one label from T and keep T as a feasible solution

 d. Repeat the above step until no labels can be removed

 e. Output T
An Example of Mutation

\[S = \{ a, b, c \} \]

\[S = \{ a, b, c, d \} \]

Ordering: a, b, c, d
An Example of Mutation

Remove \{ d \}

\[S = \{ a, b, c \} \]

Remove \{ a \}

\[S = \{ b, c \} \]

\[T = \{ b, c \} \]
Three Modified Versions of MVCA

- Voss et al. (2005) implement MVCA using their pilot method

- The results were quite time-consuming

- We added a parameter (%) to improve the results

- Three modified versions of MVCA
 - MVCA1 uses % = 100
 - MVCA2 uses % = 10
 - MVCA3 uses % = 30
MVCA1

- We try each label in L ($\% = 100$) as the first or pilot label
- Run MVCA to determine the remaining labels
- We output the best solution of the l solutions obtained
- For large l, we expect MVCA1 to be very slow
MVCA2 (and MVCA3)

- We sort all labels by their frequencies in G, from highest to lowest
- We select each of the top 10% ($\% = 10$) of the labels to serve as the pilot label
- Run MVCA to determine the remaining labels
- We output the best solution of the $l/10$ solutions obtained
- MVCA2 will be faster than MVCA1, but not as effective
- MVCA3 selects the top 30% ($\% = 30$) and examines $3l/10$ solutions
- MVCA3 is a compromise approach
A Randomized Version of MVCA (RMVCA)

- We follow MVCA in spirit
- At each step, we consider the three most promising labels as candidates
- We select one of the three labels
 - The best label is selected with prob. = 0.4
 - The second best label is selected with prob. = 0.3
 - The third best label is selected with prob. = 0.3
- We run RMVCA 50 times for each instance and output the best solution
A Modified Genetic Algorithm (MGA)

- We modify the crossover operation described earlier
- We take the union of the parents (i.e., $S = S_1 \cup S_2$) as before
- Next, apply MVCA to the subgraph of G with label set S ($S \subseteq L$), node set V, and the edge set E' ($E' \subseteq E$) associated with S
- The new crossover operation is more time-consuming than the old one
- The mutation operation remains as before
Computational Results

- 48 combinations: $n = 50$ to 200 / $l = 12$ to 250 / density = 0.2, 0.5, 0.8
- 20 sample graphs for each combination
- The average number of labels is compared
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>MVCA</th>
<th>GA</th>
<th>MGA</th>
<th>MVCA1</th>
<th>MVCA2</th>
<th>MVCA3</th>
<th>RMVCA</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVCA</td>
<td>-</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GA</td>
<td>30</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>MGA</td>
<td>33</td>
<td>30</td>
<td>-</td>
<td>10</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>125</td>
</tr>
<tr>
<td>MVCA1</td>
<td>35</td>
<td>30</td>
<td>10</td>
<td>-</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>137</td>
</tr>
<tr>
<td>MVCA2</td>
<td>31</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>6</td>
<td>62</td>
</tr>
<tr>
<td>MVCA3</td>
<td>34</td>
<td>27</td>
<td>8</td>
<td>0</td>
<td>23</td>
<td>-</td>
<td>11</td>
<td>103</td>
</tr>
<tr>
<td>RMVCA</td>
<td>35</td>
<td>30</td>
<td>7</td>
<td>3</td>
<td>20</td>
<td>10</td>
<td>-</td>
<td>105</td>
</tr>
</tbody>
</table>

Summary of computational results with respect to accuracy for seven heuristics on 48 cases. The entry \((i, j)\) represents the number of cases heuristic \(i\) generates a solution that is better than the solution generated by heuristic \(j\).
Running Times

<table>
<thead>
<tr>
<th>n = 100, l = 125, d = 0.2</th>
<th>MVCA</th>
<th>GA</th>
<th>MGA</th>
<th>MVCA1</th>
<th>MVCA2</th>
<th>MVCA3</th>
<th>RMVCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.80</td>
<td>7.50</td>
<td>8.25</td>
<td>0.80</td>
<td>2.30</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>n = 150, l = 150, d = 0.5</td>
<td>0.10</td>
<td>1.85</td>
<td>4.90</td>
<td>11.85</td>
<td>1.15</td>
<td>3.45</td>
<td>4.75</td>
</tr>
<tr>
<td>0.15</td>
<td>3.45</td>
<td>13.55</td>
<td>21.95</td>
<td>2.15</td>
<td>6.35</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>n = 150, l = 187, d = 0.5</td>
<td>0.15</td>
<td>2.20</td>
<td>6.70</td>
<td>21.70</td>
<td>2.00</td>
<td>6.15</td>
<td>7.50</td>
</tr>
<tr>
<td>n = 150, l = 187, d = 0.2</td>
<td>0.20</td>
<td>3.95</td>
<td>17.55</td>
<td>39.35</td>
<td>3.60</td>
<td>11.20</td>
<td>11.90</td>
</tr>
<tr>
<td>0.15</td>
<td>3.75</td>
<td>11.40</td>
<td>11.25</td>
<td>1.15</td>
<td>3.35</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>n = 200, l = 100, d = 0.2</td>
<td>0.15</td>
<td>2.45</td>
<td>5.80</td>
<td>26.70</td>
<td>2.70</td>
<td>8.00</td>
<td>8.65</td>
</tr>
<tr>
<td>n = 200, l = 200, d = 0.8</td>
<td>0.25</td>
<td>3.45</td>
<td>10.15</td>
<td>38.65</td>
<td>3.90</td>
<td>10.15</td>
<td>12.00</td>
</tr>
<tr>
<td>n = 200, l = 200, d = 0.5</td>
<td>0.25</td>
<td>6.20</td>
<td>26.65</td>
<td>68.25</td>
<td>6.85</td>
<td>20.35</td>
<td>20.55</td>
</tr>
<tr>
<td>n = 200, l = 200, d = 0.2</td>
<td>0.35</td>
<td>3.05</td>
<td>7.55</td>
<td>52.25</td>
<td>5.25</td>
<td>15.35</td>
<td>12.95</td>
</tr>
<tr>
<td>n = 200, l = 250, d = 0.8</td>
<td>0.30</td>
<td>3.95</td>
<td>12.60</td>
<td>69.90</td>
<td>6.80</td>
<td>20.35</td>
<td>16.70</td>
</tr>
<tr>
<td>n = 200, l = 250, d = 0.5</td>
<td>0.30</td>
<td>3.05</td>
<td>7.55</td>
<td>52.25</td>
<td>5.25</td>
<td>15.35</td>
<td>12.95</td>
</tr>
<tr>
<td>n = 200, l = 250, d = 0.2</td>
<td>0.50</td>
<td>6.90</td>
<td>33.15</td>
<td>124.35</td>
<td>12.10</td>
<td>35.80</td>
<td>28.80</td>
</tr>
<tr>
<td>Average running time</td>
<td>0.23</td>
<td>3.58</td>
<td>13.13</td>
<td>41.20</td>
<td>4.04</td>
<td>11.90</td>
<td>11.90</td>
</tr>
</tbody>
</table>

Running times for 12 demanding cases (in seconds).
One Final Experiment for Small Graphs

- 240 instances for $n = 20$ to 50 are solved by the seven heuristics

- Backtrack search solves each instance to optimality

- The seven heuristics are compared based on how often each obtains an optimal solution

<table>
<thead>
<tr>
<th>Procedure</th>
<th>OPT</th>
<th>MVCA</th>
<th>GA</th>
<th>MGA</th>
<th>MVCA1</th>
<th>MVCA2</th>
<th>MVCA3</th>
<th>RMVCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>% optimal</td>
<td>100.00</td>
<td>75.42</td>
<td>96.67</td>
<td>99.58</td>
<td>95.42</td>
<td>87.08</td>
<td>93.75</td>
<td>97.50</td>
</tr>
</tbody>
</table>
Conclusions

- We presented three modified (deterministic) versions of MVCA, a randomized version of MVCA, and a modified GA

- All five of the modified procedures generated better results than MVCA and GA, but were more time-consuming

- With respect to running time and performance, MGA seems to be the best
Related Work

- The Label-Constrained Minimum Spanning Tree (LCMST) Problem
 - We show the LCMST problem is NP-hard
 - We introduce two local search methods
 - We present an effective genetic algorithm
 - We formulate the LCMST as a MIP and solve for small cases
 - We introduce a dual problem