Do subjective expectations explain asset pricing puzzles?

Gurdip Bakshi, Georgios Skoulakis

PII: S0304-405X(10)00158-3
Reference: FINEC 1922

Received date: 16 March 2009
Revised date: 9 November 2009
Accepted date: 25 November 2009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Do subjective expectations explain asset pricing puzzles?*

Gurdip Bakshia† Georgios Skoulakisb ‡

aSmith School of Business, University of Maryland, College Park, MD 20742, USA
bSmith School of Business, University of Maryland, College Park, MD 20742, USA

Abstract

The structural uncertainty model with Bayesian learning, advanced by Weitzman (AER 2007), provides a framework for gauging the effect of structural uncertainty on asset prices and risk premiums. This paper provides an operational version of this approach that incorporates realistic priors about consumption growth volatility, while guaranteeing finite asset pricing quantities. In contrast to the extant literature, the resulting asset pricing model with subjective expectations yields well-defined expected utility, finite moment generating function of the predictive distribution of consumption growth, and tractable expressions for equity premium and risk-free return. Our quantitative analysis reveals that explaining the historical equity premium and risk-free return, in the context of subjective expectations, requires implausible levels of structural uncertainty. Furthermore, these implausible prior beliefs result in consumption disaster probabilities that virtually coincide with those implied by more realistic priors. At the same time, the two sets of prior beliefs have diametrically opposite asset pricing implications.

KEY WORDS: Subjective expectations; Learning; Structural uncertainty; Priors; Predictive density of consumption growth; Equity premium; Risk-free return.

JEL CLASSIFICATION CODES: D34, G0, G12, G13.

*The feedback of Jay Shanken (the referee) and G. William Schwert (the editor) have dramatically improved the paper. We acknowledge helpful discussions with Doron Avramov, Isabelle Bajeux-Besnainou, Alexandre Baptista, Zhiwu Chen, Dobrislav Dobrev, Lorenzo Garlappi, Steve Heston, Jerry Hoberg, Ravi Jagannathan, Pete Kyle, Dilip Madan, Anna Obizhaeva, Lubos Pastor, George Panayotov, Nagapurand Prabhala, Matt Pritsker, Mark Loewenstein, Steve Sharpe, Allan Timmermann, and Martin Weitzman. Earlier versions of the paper were presented at the Federal Reserve Board, University of Maryland, George Washington University, 2008 Latin American Meeting of the Econometric Society (Rio de Janeiro), the 2009 Society for Financial Econometrics Conference (Geneva), the 2009 Multinational Finance Society Conference (Crete), and the 2009 Society for Economic Dynamics Conference (Istanbul).

†Tel.: +1-301-405-2261; fax: +1-301-405-0359. E-mail address: gbakshi@rhsmith.umd.edu
‡Tel.: +1-301-405-2934; fax: +1-301-405-0359. E-mail address: gskoulak@rhsmith.umd.edu
1. Introduction

The structural uncertainty model with Bayesian learning, developed by Weitzman (2007), provides an economic environment for understanding the effect of structural uncertainty on asset prices and risk premiums. Rooted in the theoretical underpinnings of Lucas (1978), the logical structure of the model formalizes the sense in which structural parameter uncertainty can dominate aggregate consumption risk in explaining aggregate stock market behavior.\(^1\)

In the asset pricing setup of Weitzman (2007), the representative agent experiences uncertainty about the volatility of consumption growth, the support of which is assumed to be the entire positive real line, and updates his beliefs in a Bayesian fashion. Drawing on the work of Shephard (1994), Weitzman notes that the predictive distribution of consumption growth, which is Normal in the absence of structural uncertainty, gets transformed into a heavy-tailed Student-\(t\) distribution. This theoretical modification within the Lucas paradigm is enormous in its implications. First, the theoretical results imply that the agent can demand arbitrarily large compensation for bearing uncertainty about consumption growth volatility, the true structure of which remains unknown forever. Second, the observed magnitudes of equity risk premium and risk-free return are not to be regarded as puzzles requiring reconciliation, but rather as antipuzzles. The effect of structural uncertainty in a Bayesian framework is sufficiently powerful to reverse the direction of asset pricing puzzles, implying the futility of aligning theoretical models to fit observed asset pricing quantities.

How robust is the implication in Weitzman (2007) that structural uncertainty and learning can quantitatively exert a big influence on the tail behavior of consumption growth and, hence, on asset pricing quantities? Are the arguments in Weitzman (2007) inextricably linked to the predictive Student-\(t\) distribution for consumption growth for which the moment generating function does not exist, or do they apply more broadly? For instance, how do the asset pricing implications change when the Student-\(t\) distribution is replaced by a comparable class of heavy-tailed Bayesian predictive distributions? Finally, what levels of a priori uncertainty are required to reconcile asset-return puzzles, and do such conditions appear reasonable?

At the heart of our contribution is an exact characterization of the predictive distribution of consumption growth that supports the finiteness of the moment generating function under subjective uncertainty and Bayesian learning. The operational version of the theory we offer is imperative for ensuring finite expected utility (e.g., Geweke, 2001) and for studying the quantitative asset pricing implications of the model, when the support of consumption growth volatility is a bounded interval.

We operationalize the theory by accommodating prior and posterior distributions of the precision of consumption growth that are both in the truncated Gamma class. The linchpin of our approach is a theorem that establishes the conjugacy of the prior and the posterior distributions for the precision of consumption growth, under a judicious choice of a transition mechanism. Our analysis shows that the derived predictive density of consumption growth is akin to the Student-\(t\) distribution in terms of its probabilistic law, except that it possesses finite moments of all orders. The model offers the advantage of a representation of asset pricing quantities under structural uncertainty and Bayesian learning that is amenable to convenient computation through the moment generating function. Our approach can be construed as a mathematical formalization of an asset pricing model that incorporates a compact support for consumption growth volatility and addresses the intuition conveyed in Weitzman (2007) on the role of subjective expectations in determining asset prices. The model also maintains the nonergodic aspect of learning as in Weitzman (2007), where uncertainty about consumption growth volatility does not vanish even with an arbitrarily large amount of past data.

The model with structural uncertainty is implemented with a view to investigate its potential to resolve asset pricing puzzles. First, we observe that plausible structural uncertainty, summarized by the uncertainty about consumption growth volatility, fails to produce a large equity premium. Second, the response of asset pricing quantities is flat over a broad range of configurations of structural uncertainty. Only when the maximum level of consumption growth volatility is unreasonably high can the model match the historical average equity premium and risk-free return. Third, we find that two sets of priors, which result in consumption disaster probabilities that are indistinguishable, generate vastly different asset pricing implications. The gist is that rationalizing asset pricing phenomena through subjective expectations demands arguably excessive levels of structural uncertainty.

The paper proceeds as follows. Section 2 outlines the Weitzman (2007) framework for understanding the asset pricing implications of structural uncertainty. Section 3 departs from Weitzman (2007) and provides an alternative characterization of the predictive density of consumption growth that supports a finite
moment generating function. Our generalization posits uncertainty about consumption growth volatility over a realistic compact support instead of the entire positive real line. The focus of Section 4 is to investigate whether structural uncertainty with realistic priors facilitates a resolution of well-documented asset pricing puzzles. Finally, Section 5 concludes the paper. Proofs are in the Appendix.

2. Review of the structural uncertainty framework in Weitzman (2007)

The following assumptions about preferences, subjective expectations, and learning about structural uncertainty are at the center of the theoretical analysis in Weitzman (2007).

Assumption 1 The model is developed in terms of a representative agent who orders his preferences over random consumption paths and maximizes utility subject to the usual budget constraint (Lucas, 1978),

\[
E_t \left(\sum_{j=0}^{\infty} \beta^j U(C_{t+j}) \right), \quad \text{where} \quad U(C_t) = \frac{C_t^{1-\alpha}}{1-\alpha}. \tag{1}
\]

\(C_t\) denotes consumption at time \(t\), \(0 < \beta < 1\) is the time-preference rate, and \(E_t(\cdot)\) is expectation operator with respect to the subjective distribution of future consumption growth rates. The agent has power utility function with coefficient of relative risk aversion \(\alpha > 0\).

This model differs from the previous literature in that it accommodates probability beliefs as reflected in subjective expectations about consumption growth. There is uncertainty in the economy with respect to the stochastic process of consumption growth,

\[X_{t+1} \equiv \ln \left(\frac{C_{t+1}}{C_t} \right) \in (-\infty, \infty). \tag{2}\]

In particular, the conditional volatility of consumption growth, denoted by \(\sigma_t\), is stochastic and unobservable. Define the precision as

\[\theta_t \equiv \frac{1}{\sigma_t^2} \in (0, \infty), \tag{3}\]

which is the reciprocal of the variance of consumption growth.

Suppose observations on realized consumption growth are available starting in period \(\tau\), which should be thought of as representing the distant past. For each time period \(t = \tau, \tau + 1, \ldots\), denote by \(X'\) the set of
all observations on consumption growth up to and including period t: $X^t = \{x_\tau, \ldots, x_t\}$.

The intertemporal marginal rate of substitution between t and $t+1$ is given by $\beta \left(\frac{C_{t+1}}{C_t} \right)^{-\alpha} = \beta e^{-\alpha x_{t+1}}$.

At each time t, the agent obtains the subjective distribution of X_{t+1} by conditioning on all past data X^t.

Assumption 2 Conditional on precision θ_t, the consumption growth, X_t, is Normally distributed,

$$X_t \sim N \left(\mu, \frac{1}{\theta_t} \right),$$

with

$$p(X_t|\theta_t) = \frac{1}{\sqrt{2\pi}} \frac{1}{\theta_t} e^{-\frac{(X_t-\mu)^2}{2}}, \quad (4)$$

where $p(X_t|\theta_t)$ denotes the density of consumption growth conditional on θ_t. The mean consumption growth is μ, which is assumed to be a known constant.

It must be appreciated that the Weitzman (2007) framework can be refined to allow for learning about mean consumption growth without affecting model predictions about asset pricing puzzles. In particular, Theorem 2.25 in Bauwens, Lubrano, and Richard (1999) shows that when both the mean and the variance are unknown, the resulting predictive distribution is Student-t distribution, but with inflated variance. Furthermore, Example 3 in Geweke (2001) emphasizes that in a model with known variance and unknown mean, the predictive and the primitive consumption growth distributions are both Gaussian. It is learning about volatility, as opposed to learning about the mean, that is fundamental to generating fat-tailed predictive consumption growth distributions that are important for addressing the asset pricing issues at hand.

The agent is uncertain about the true precision θ_{t+1} and maintains subjective beliefs, captured by the conditional density $p(\theta_{t+1}|X^t)$. The modeling innovation of Weitzman (2007) is that the agent makes Bayesian inferences about θ_{t+1} given history X^t, combining elements from Harvey and Fernandes (1989), Shephard (1994), and Geweke (2001).

Assumption 3 Assume that, in the initial period τ, the conditional density, $p(\theta_\tau|X^\tau)$, is Gamma(a_τ, b_τ).

Specifically,

$$p(\theta_\tau|X^\tau) = \frac{b_\tau^{a_\tau}}{\Gamma[a_\tau]} \theta_\tau^{a_\tau-1} e^{-\frac{b_\tau}{\theta_\tau}}, \quad \theta_\tau \in (0, \infty), \quad a_\tau > 0, \quad b_\tau > 0, \quad (5)$$

where $\Gamma[a] = \int_0^{\infty} z^{a-1} e^{-z} dz$ is the complete Gamma function with $a > 0$.

The evolution of precision θ_t is described in the following sequential fashion, so as to maintain the conjugacy of the system through time.

Assumption 4 Given precision of consumption growth θ_t, the evolution of precision at date $t+1$, θ_{t+1}, is governed by the transition equation

$$\theta_{t+1} = \frac{1}{\omega} \eta_{t+1} \theta_t, \quad 0 < \omega < 1,$$

where the multiplicative shock η_{t+1}, given the history X^t, follows a Beta $(\omega a_t, (1-\omega) a_t)$ distribution.

Eq. (6) specifies the learning scheme about structural uncertainty in the economy and is the driving force behind the fatter tails of the predictive distribution of consumption growth. The parameter ω is a constant that controls the speed of precision. An important aspect of the above specification, as adopted in Weitzman (2007), is that the support of the precision process is the entire positive real line. As a result, the consumption growth volatility can take arbitrarily large values with positive probability.

Under Assumptions 3 and 4, it follows from the analysis in Section 3 in Shephard (1994) that the conditional density, $p(\theta_{t+1}|X^t)$, remains in the Gamma family and preserves conjugacy. Specifically,

$$\theta_t|X^t \sim \text{Gamma}(a_t, b_t) \quad \text{and} \quad \theta_t|X^{t-1} \sim \text{Gamma}(A_{t-1}, B_{t-1}),$$

where a_t, b_t and A_{t-1}, B_{t-1} are related via the recursive equations

$$a_t = A_{t-1} + \frac{1}{2}, \quad A_{t-1} = \omega a_{t-1}, \quad b_t = B_{t-1} + \frac{1}{2}(x_t - \mu)^2, \quad B_{t-1} = \omega b_{t-1}.$$

The recursions involving A_t and B_t alone are $A_t = \omega (A_{t-1} + \frac{1}{2})$ and $B_t = \omega (B_{t-1} + \frac{1}{2}(x_t - \mu)^2)$. An extreme realization of consumption growth at time t causes a large squared deviation $(x_t - \mu)^2$ which, in turn, increases B_t. Thus, the overall impact is to decrease the mean A_t/B_t of the conditional distribution of the precision θ_{t+1} given the history X^t.

Moreover, recursive substitution in terms of past history τ of consumption growth yields

$$A_t = \frac{1}{2} (\omega + \cdots + \omega^{t-\tau}) + \omega^{t-\tau} A_\tau = \frac{\omega}{2} \left(\frac{1 - \omega^{t-\tau}}{1 - \omega} \right) + \omega^{t-\tau} A_\tau, \quad \text{and}$$

$$B_t = \frac{1}{2} \left(\omega(x_t - \mu)^2 + \omega^2(x_{t-1} - \mu)^2 + \cdots + \omega^{t-\tau}(x_{t+1-\tau} - \mu)^2 \right) + \omega^{t-\tau} B_\tau.$$
In the spirit of Lemma 5 of Weitzman (2007), assume the availability of a large history of consumption growth starting in period τ, and let $\omega = (k - 1)/k$, where k captures the effective sample size. Imposing a large (in absolute value) $\tau < 0$ in Eqs. (9)–(10), the following relation are obtained, given that $0 < \omega < 1$:

$$
A_t \approx \frac{\omega}{2(1 - \omega)} = \frac{k - 1}{2}, \quad B_t \approx \frac{(k - 1)V_t}{2}, \quad \text{where} \quad V_t = \sum_{j=0}^{t-\tau-1} \frac{1}{k} \left(1 - \frac{1}{k}\right)^j (x_t - j - \mu)^2.
$$

(11)

Thus, $2A_t \approx k - 1$ and $B_tA_t^{-1} \approx V_t$. Hinging on a large history of past realizations of consumption growth, V_t is the state variable that estimates the volatility of consumption growth with declining weights $\frac{1}{k} (1 - \frac{1}{k})^j$.

Subjective uncertainty about consumption growth volatility does not vanish even with an arbitrarily large number of past observations, as emphasized in Weitzman (2007). Namely, the economy incorporates the aspect of nonergodic learning.

With the aforementioned structural uncertainty and the posited Bayesian learning rule, the theoretical object of interest is the predictive distribution of X_{t+1} given all past observations:

$$
g(X_{t+1}|X_t) = \int p(X_{t+1}|\theta_{t+1}, X_t) p(\theta_{t+1}|X_t) d\theta_{t+1} = \int p(X_{t+1}|\theta_{t+1}) p(\theta_{t+1}|X_t) d\theta_{t+1}.
$$

(12)

Under the stated assumptions, the predictive distribution of consumption growth can be characterized as the fat-tailed Student-t distribution, with $2A_t$ degrees of freedom, represented by

$$
Y_{t+1} \sim t(2A_t), \quad \text{where} \quad Y_{t+1} \equiv \frac{X_{t+1} - \mu}{\sqrt{B_tA_t^{-1}}},
$$

(13)

with density

$$
g(Y_{t+1};2A_t) = \frac{\Gamma[(2A_t + 1)/2]}{\pi \sqrt{2A_t} \Gamma[A_t]} \left(1 + \frac{Y_{t+1}^2}{2A_t}\right)^{-(2A_t+1)/2}.
$$

(14)

The Student-t distribution has the property that its moment generating function $\int_{-\infty}^{\infty} e^{\lambda X_{t+1}} g(X_{t+1}) dX_{t+1}$ does not exist. Unfortunately, this means that the expectation of the marginal rate of substitution, $E_t (\beta e^{-\alpha X_{t+1}})$, taken under the subjective distribution of consumption growth, is not finite in the Weitzman (2007) economy.

Eqs. (13) and (14) for the predictive Student-t distribution reiterate Eq. (24) in Weitzman (2007) in the case of a long past history, except that the number of degrees of freedom is $k - 1$, as also in Shephard (1994), instead of k. That is, conditional on the knowledge of a large history of consumption growth,
$2A_t \approx k - 1$ and $B_t A_t^{-1} \approx V_t$ from Eq. (11) and therefore $Y_{t+1} \sim t(k - 1)$.

Given the marginal rate of substitution in the economy, the gross risk-free return and the equity premium, as derived in Weitzman (2007) in logarithmic form, are

$$\ln(R_{t+1}^f) = -\ln(\beta) - \ln(E_t(e^{-\alpha X_{t+1}})), \quad \text{and}$$

$$\ln(E_t(R_{t+1}^f)) - \ln(R_{t+1}^f) = \ln\left(\frac{E_t(e^{X_{t+1}})}{\beta E_t(e^{(1-\alpha)X_{t+1}})}\right) - \ln\left(\frac{1}{\beta E_t(e^{-\alpha X_{t+1}})}\right).$$

(15)

(16)

It follows that, as Weitzman (2007, p. 1112) acknowledges, an economy that gives rise to a predictive Student-t distribution for consumption growth X_{t+1} has undesirable features. As implied by Eqs. (15)-(16), the risk-free return and the equity premium are not well-defined objects, as the moment generating function of X_{t+1} is not finite. Furthermore, such a framework does not guarantee finite expected utility. In addition, the risk-neutral density (e.g., Harrison and Kreps, 1979) given by $g(Y_{t+1}) e^{-\alpha X_{t+1}} / E_t(e^{-\alpha X_{t+1}})$, which is central to pricing contingent claims, is not well-defined.

To keep expected utility finite, Weitzman (2007, pp # 1112–1113) proposes, but does not formalize, restricting structural uncertainty by confining consumption growth precision between some minimum and maximum levels:

$$\theta_t \in [\underline{\theta}, \overline{\theta}], \quad \text{for all } t, \quad 0 < \underline{\theta} < \overline{\theta} < \infty,$$

(17)

which imposes a support both for the prior and the posterior for precision given X_t. However, our contention is that the proposed mechanism in Weitzman (2007) for the evolution of the process θ_t does not guarantee that the process takes values on the desired interval $[\underline{\theta}, \overline{\theta}]$ over time, while preserving the conjugacy of the system.2

Going beyond Weitzman (2007), our incremental contribution is two-fold. First, while imposing a compact support on precision away from zero for all t, we establish the finiteness of, and provide an expression for, the moment generating function of consumption growth under structural uncertainty and Bayesian learning. To be able to link asset pricing quantities to risk aversion and structural uncertainty is the

2To see this point, recall the precision transition Eq. (26) in Weitzman (2007), which reads $\theta_t = \zeta_t \theta_{t-1}$, where ζ_t is the multiplicative shock that corresponds to $\omega \eta_t$ in our notation. According to the density specification for ζ_t, given in Eq. (28) in Weitzman (2007), the shock ζ_t takes values over the entire interval $[0, k/(k - 1)]$ with positive probability. Therefore, under the assumption that the support of θ_{t-1} is the interval $[\underline{\theta}, \overline{\theta}]$, it follows that the support of θ_t is the interval $[0, \overline{\theta}k/(k - 1)]$. In other words, the specification in Weitzman (2007) does not guarantee that the precision process stays within $[\underline{\theta}, \overline{\theta}]$ over time.
impetus for ensuring the finiteness of the moment generating function. Second, exploiting the operational version of the theory developed here, we are able to compute the equity premium and the risk-free return through the moment generating function, a feature central to quantitative assessments. Such computations are not feasible within the setting of Weitzman (2007) due to the lack of finiteness of the moment generating function associated with the Student-\(t\) distribution.

3. A structural uncertainty asset pricing model under bounded volatility

This section presents the theoretical results used to address whether subjective expectations can help explain asset pricing puzzles. In Theorem 1, we operationalize the restriction that precision has compact support away from zero within a Bayesian learning framework and, in a key departure from Weitzman (2007), we develop the associated posterior density for the precision of consumption growth. Under this modification, Theorem 2 provides a closed form expression for the predictive density of consumption growth. Furthermore, the moment generating function of the predictive distribution of consumption growth is derived in Theorem 3.

3.1. Posterior density for precision in the truncated Gamma class: a new conjugacy result

To proceed, define \(\vartheta_t\) to be the precision of consumption growth with finite support denoted by \([\vartheta, \vartheta]\) with \(\vartheta > 0\). Bear in mind that \(\vartheta_t\) is not to be confused with \(\theta_t\), as used in Shephard (1994) and Weitzman (2007) [see our Eq. (7)], because the latter follows a Gamma distribution and so its support is the entire positive real line. In other words, \(\vartheta_t\) is the analogue to \(\theta_t\) under the assumption of bounded support away from zero.

Under the following two assumptions, we establish the conjugacy of \(\vartheta_{t+1}\) and \(\vartheta_t\) in the class of doubly truncated Gamma distributions with support \([\hat{\vartheta}, \bar{\vartheta}]\) for all \(t\).

Assumption 3’ For a given time \(t\), the conditional distribution of precision \(\vartheta_t\) given \(X^{t-1}\) is doubly truncated Gamma with parameters \(A_{t-1}\) and \(B_{t-1}\) and truncation points \(\hat{\vartheta}\) and \(\bar{\vartheta}\) with density

\[
p(\vartheta_t | X^{t-1}) \propto \vartheta_t^{A_{t-1}-1} e^{-B_{t-1}\vartheta_t} \mathbb{I}_{[\hat{\vartheta}, \bar{\vartheta}]}(\vartheta_t),
\]

where the support of the precision distribution is \([\hat{\vartheta}, \bar{\vartheta}]\) and \(\mathbb{I}_{[\cdot, \cdot]}(\cdot)\) denotes an indicator function. The
distribution described in Eq. (18) is denoted by \(TG(A_{t-1}, B_{t-1}; \underline{\vartheta}, \overline{\vartheta}) \).

Assumption 4' For a given time \(t \), the transition equation for precision \(\vartheta_{t+1} \) is

\[
\vartheta_{t+1} = \frac{1}{\omega} \delta_{t+1} \vartheta_t, \quad \vartheta_t \in [\underline{\vartheta}, \overline{\vartheta}], \quad 0 < \omega < 1. \tag{19}
\]

The conditional distribution of the multiplicative shock \(\delta_{t+1} \), given \(\vartheta_t \) and the history \(X^t \), is specified in Eq. (35) in the Appendix.

Theorem 1 Suppose that, for a given time \(t \), Assumption 3' regarding the precision \(\vartheta_t \) and Assumption 4' regarding the multiplicative shock \(\delta_{t+1} \) are satisfied. Then, the posterior distribution of precision \(\vartheta_{t+1} \) given \(X^t \) is also \(TG(A_t, B_t; \underline{\vartheta}, \overline{\vartheta}) \), where

\[
A_t = \omega \left(A_{t-1} + \frac{1}{2} \right), \quad B_t = \omega \left(B_{t-1} + \frac{(x_t - \mu)^2}{2} \right). \tag{20}
\]

Proof: See the Appendix. \(\square \)

What we have derived in Theorem 1 is an exact result on the posterior distribution of precision \(\vartheta_{t+1} \) given \(X^t \), which is doubly truncated Gamma, with truncation points \(\underline{\vartheta} \) and \(\overline{\vartheta} \) (see Coffey and Muller, 2000). An explicit characterization of the posterior distribution is imperative to developing a predictive distribution of consumption growth. In particular, our approach formalizes a predictive density framework that prevents extreme beliefs about consumption growth volatility to dominate the analysis. Corresponding to the truncation points of consumption growth volatility defined by

\[
\sigma_t = \frac{1}{\sqrt{\vartheta_t}} \quad \text{and} \quad \overline{\sigma} = \frac{1}{\sqrt{\vartheta}}, \tag{21}
\]

we have \(\sigma_t \in [\underline{\sigma}, \overline{\sigma}] \) for all \(t \).

In our theoretical model, Assumptions 3' and 4' replace Assumptions 3 and 4 of Section 2. When the support of consumption growth precision is enlarged to accommodate \(\underline{\vartheta} \rightarrow 0 \) and \(\overline{\vartheta} \rightarrow \infty \), we obtain, as a limiting case, the setting of Weitzman (2007).

From a broader economic perspective, the structure of beliefs posited in Eqs. (18) and (19) is essential to ensuring finite expected utility. Paramount for asset pricing formulations, the finiteness of the expected
utility ensures a well-posed marginal utility function (e.g., Duffie, 1992). An alternative modeling approach that would guarantee finite expected utility is to truncate the support of the consumption growth distribution. However, this approach is hampered by the lack of a closed-form expression for the predictive density of consumption growth through Bayesian methods. Moreover, and of greater economic relevance, Weitzman (2007) argues that fat tails of the predictive distribution of consumption growth, as implied by structural uncertainty, can substantially bear on asset pricing quantities. Eliminating the tails, by truncating the support of the consumption growth distribution, would diminish the impact of structural uncertainty. Thus, our model overcomes the shortcomings of the alternative approach, while preserving finite expected utility and, at the same time, generating fat-tailed predictive consumption growth distributions.

Theorem 1 shows that when the conditional distribution \(\vartheta_t \) given \(X_{t-1} \) is truncated Gamma, then the conditional distribution of \(\vartheta_{t+1} \) given \(X_t \) is also truncated Gamma. The distribution of the multiplicative shock \(\delta_{t+1} \) in Eq. (19) must consequently be outside of the Beta distribution class, which is defined over \((0, 1)\), as in Shephard (1994) and Weitzman (2007). Our choice of the multiplicative shock distribution is designed to preserve the conjugacy of the prior and the posterior to be in the truncated Gamma class. Eqs. (35) in the Appendix implies that \(\delta_{t+1} \) is correlated with \(\vartheta_t \) in our model.¹

Eq. (20) reveals that the evolution of \(A_t \) and \(B_t \) is characterized by the same recursion as in Weitzman (2007), where the precision process takes values over the entire positive real line. Nevertheless, the distinction is that, to make the theory operational, we propose a precision process that maintains bounded support away from zero, which is crucial for drawing asset pricing implications.

We wish to stress that, as in the framework of Weitzman (2007), the aspect of nonergodic learning is maintained in our model, in the sense that, even for an arbitrarily long history of past data, uncertainty about consumption growth volatility remains influential. This is a consequence of the fact that, in both settings, the Bayesian agent is learning about the time-varying quantity of interest, namely, the precision of consumption growth. Moving backward recursively and assuming that a long past history of length \(\tau \) is

¹One aspect of the transition dynamics in Eq. (19) deserves further discussion. Shephard (1994) argues that when \(\vartheta_t \) is Gamma distributed with support \((0, \infty)\), \(\vartheta_T \to 0 \) almost surely, as \(T \to \infty \). To circumvent the undesirable feature that consumption growth volatility eventually becomes infinite, he modifies, using an appropriate dampening constant \(r_T \), the transition equation to \(\vartheta_t = e^{r_T} \eta_t \vartheta_{t-1} \) to prevent \(\vartheta_t \) from reaching zero. Restricting precision \(\vartheta_t \) on \([\vartheta, \bar{\vartheta}]\), we prevent consumption growth volatility from becoming arbitrarily large as the economy evolves. Although not reported, our simulations suggest that, for plausible values of \(\omega \), it takes several hundred years for the consumption growth volatility to become large even when precision is not truncated and takes values over \((0, \infty)\). Nevertheless, given the observed consumption growth history, precision paths associated with eventually infinite consumption growth volatility will be ignored by the Bayesian investor in his posterior calculations. For these reasons, we keep matters simple and do not introduce a dampening factor in the transition Eq. (19).
available in Eq. (20), we arrive at
\[A_t \approx \frac{k - 1}{2}, \quad B_t \approx \frac{(k - 1)V_t}{2}, \quad \text{where} \quad V_t = \sum_{j=0}^{t-1} \frac{1}{k} \left(1 - \frac{1}{k}\right)^j (x_t-j-\mu)^2. \tag{22} \]

With such an understanding, we henceforth set \(2A_t = k - 1 \) and \(B_tA_t^{-1} = V_t \) in our implementations.

Given that the support of the precision process is the bounded interval \([\vartheta, \bar{\vartheta}]\), with \(\vartheta > 0 \), the relevant questions to ask are whether we are excluding priors that are economically relevant and whether the proposed truncation points are overly restrictive. To address these concerns, we simulate ten million draws from the posterior distribution \(\theta_{t+1} \) given \(X_t \), when no truncation is imposed, which is Gamma\((A_t, B_t)\). For this exercise, we set the volatility of consumption growth to \(\sqrt{V} = 2\% \) and the effective sample size to \(k = 50 \). Thus, \(A = (k - 1)/2 = 24.5 \) and \(B = (k - 1)V/2 = 0.0098 \). Accordingly, we present in Fig. 1 the distribution of both the precision \(\theta_{t+1} \) (see Panel A) and the volatility of consumption growth \(\sigma_{t+1} = 1/\sqrt{\theta_{t+1}} \) (see Panel B). The message is that, even with ten million draws, it is not feasible to generate values of \(\sigma_{t+1} \) above 4.5% and \(\theta_{t+1} \) below 735. This is an indication that the two precision distributions, without truncation and with truncation, are virtually indistinguishable. To substantiate the claim from a different angle, we calculate \(\text{Prob}(\sigma_{t+1} \geq \sigma) \), for values of \(\sigma \) ranging from 5% to 500%, and report the probabilities:

<table>
<thead>
<tr>
<th>(\sigma) = 1/\sqrt{\vartheta}</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>50%</th>
<th>100%</th>
<th>200%</th>
<th>500%</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 50</td>
<td>2.60E-12</td>
<td>7.71E-26</td>
<td>5.38E-45</td>
<td>1.07E-59</td>
<td>1.96E-74</td>
<td>3.50E-89</td>
<td>1.11E-108</td>
</tr>
<tr>
<td>k = 100</td>
<td>3.08E-23</td>
<td>1.62E-50</td>
<td>3.32E-89</td>
<td>6.62E-119</td>
<td>1.11E-148</td>
<td>1.77E-178</td>
<td>7.15E-218</td>
</tr>
</tbody>
</table>

With parameters corresponding to historical consumption growth, the calculations show that the probabilities are extremely small and decline rapidly in the tails. With \(k = 100 \), the probabilities \(\text{Prob}(\sigma_{t+1} \geq \sigma) \) are even smaller. In conclusion, given the parameters specified above, imposing a truncation limit \(\sigma \) above 5% on the support of the distribution of consumption growth volatility does not materially alter the prior distribution.

[Fig. 1 about here.]

3.2. Predictive density of consumption growth under bounded volatility

Before providing the analytical form of the predictive density of consumption growth in the next theorem, we invoke the following assumption, which is the analogue to Assumption 2 in Section 2.
Assumption 2' Conditional on precision ϑ_{t+1}, the consumption growth, X_{t+1}, is Normally distributed with $X_{t+1} \sim N\left(\mu, \frac{1}{\vartheta_{t+1}}\right)$, where the mean μ is a known constant and the precision ϑ_{t+1} has support $[\underline{\vartheta}, \overline{\vartheta}]$.

Theorem 2 Under Assumptions 2', 3', and 4', the probability density function of the standardized consumption growth $Y_{t+1} = \frac{X_{t+1} - \mu}{\sqrt{B_t A_t}}$ given the history X_t, is

$$g^{D^T}(Y_{t+1}; \nu_t, \xi_{t\underline{2}}, \xi_{t\overline{2}}) = \frac{\gamma\left[\nu_t/2, \frac{1}{2} \xi_{t\underline{2}} \left(1 + \frac{Y_{t+1}^2}{\nu_t}\right)\right] - \gamma\left[\nu_t/2, \frac{1}{2} \xi_{t\overline{2}} \left(1 + \frac{Y_{t+1}^2}{\nu_t}\right)\right]}{\sqrt{\pi \nu_t} \left(\gamma\left[\nu_t/2, \xi_{t\underline{2}}/2\right] - \gamma\left[\nu_t/2, \xi_{t\overline{2}}/2\right]\right) \left(1 + \frac{Y_{t+1}^2}{\nu_t}\right)^{\nu_t/2}},$$

where ν_t represents the degrees of freedom and $\xi_{t\underline{2}}, \xi_{t\overline{2}}$ represent the truncation parameters, given by

$$\nu_t = 2A_t, \quad \xi_{t\underline{2}} = 2\underline{\vartheta}B_t, \quad \xi_{t\overline{2}} = 2\overline{\vartheta}B_t,$$ \hspace{1cm} (24)

and $\gamma[a, j] = \int_0^j u^{a-1} e^{-u} du$ is the lower incomplete Gamma function for $a > 0$ and $j > 0$. For reasons not yet articulated, we call the predictive density in Eq. (23) the dampened t distribution.

Proof: See the Appendix. □

Suppressing the time subscripts for brevity, when $\xi_{t\underline{2}} \to 0$ and $\xi_{t\overline{2}} \to \infty$, the density $g^{D^T}(Y; \nu, \xi_{t\underline{2}}, \xi_{t\overline{2}})$ approaches the Student-t density with ν degrees of freedom. The Normal distribution with mean zero and variance ν is obtained as a limiting case, when $\xi_{t\underline{2}} \uparrow \nu$ and $\xi_{t\overline{2}} \downarrow \nu$ with $\xi > 0$.

An alternative parametrization of density $g^{D^T}(Y_{t+1}; \nu, \xi_{t\underline{2}}, \xi_{t\overline{2}})$ can be obtained by defining

$$\ln \left(\xi_{t\underline{2}}\right) = \ln (\nu) - \frac{1}{I}, \quad \ln \left(\xi_{t\overline{2}}\right) = \ln (\nu) + \frac{1}{I},$$

where I is a positive constant.

Case 1 Based on the mapping in Eq. (25), when $I \to 0$, $\xi_{t\underline{2}} \to 0$ and $\xi_{t\overline{2}} \to \infty$. Accordingly, as $I \to 0$ the distribution in Eq. (23) approaches the Student-t distribution (Geweke, 2001; and Weitzman, 2007).

Case 2 Correspondingly, from Eq. (25), as $I \to \infty$ it follows that $\xi_{t\underline{2}} \downarrow \nu$ and $\xi_{t\overline{2}} \downarrow \nu$. Thus, as $I \to \infty$ the distribution in Eq. (23) converges to the standard Normal distribution.
Case 3 Imposing $2A_t = k - 1$ and $B_t A_t^{-1} = V_t$ in Eq. (23) of Theorem 2 yields

$$g^{DT}(Y_{t+1}; k - 1, \bar{\gamma}(k - 1)V_t, \bar{\delta}(k - 1)V_t),$$

(26)

which corresponds to the case of a large number of past observations on consumption growth from Eq. (22).

Our characterizations imply that the three-parameter density family $g^{DT}(Y_{t+1}; \nu_t, \xi_t, \xi_t)$ lies in between the Normal distribution and the Student-t distribution. But, is the predictive density Eq. (23) closer to the heavy-tailed Student-t distribution Eq. (12) or the thin-tailed Normal distribution? A parsimonious way to capture the difference between Eqs. (14) and (23) is to compute the logarithm of the ratio of the two densities when a large past history of consumption growth is available (i.e., from Case 3, $2A_t = k - 1$, $B_t A_t^{-1} = V_t$):

$$Y_{t+1} = \ln \left(\frac{g(X_{t+1}; k - 1)}{g^{DT}(X_{t+1}; k - 1, \bar{\gamma}(k - 1)V_t, \bar{\delta}(k - 1)V_t)} \right), \quad X_{t+1} = \mu + \sqrt{V_t} Y_{t+1}.$$

(27)

Fig. 2 plots Y_{t+1} versus consumption growth X_{t+1}, taking $\mu = 2\%$, $\sqrt{V} = 2\%$, $k = 50$, $\sigma = 1/\sqrt{\sigma} = 0.01\%$, and $\bar{\sigma} = 1/\sqrt{\bar{\sigma}} = 500\%$. The flat region in the bowl-shaped curve has the interpretation that the two predictive densities are equivalent over consumption growth of roughly $\pm 1,700\%$. Even when differences are observed in the tails, the distinction is of the order of 10^{-7}. Intuitively, this slight departure occurs as the Student-t distribution has raw moments up to order $\ell < k - 1$, whereas the density in Eq. (23) has bounded algebraic moments of all orders (shown in Theorem 3). Given the inherent closeness of the two predictive distributions, the density in Eq. (23) is labeled as the dampened t distribution. The source of the dampening is the difference between the incomplete Gamma function evaluated at the upper and the lower truncation points, as seen from Eq. (23). It is the incomplete Gamma trimming that ensures the finiteness of the moment generating function.\footnote{Shephard (1994) has also considered the generalized error distribution as a building block for the conditional distribution of $X_t|\theta_t$. Such a treatment, along with a generalized Gamma distributed precision process, induces a predictive distribution that is generalized Student-t distribution. However, the moment generating function still does not exist and therefore hinders the usefulness of the model for examining asset pricing puzzles. To our knowledge, when $X_t|\theta_t$ follows a generalized error distribution and the precision process follows Eq. (19) and lives on a compact support away from zero, the predictive distribution is unamenable to analytical characterization through Bayesian methods.}

[Fig. 2 about here.]

There is an alternative way to construct the predictive density Eq. (23). Suppose Z is a standard Normal
variante and \(W \) follows a \(\chi^2 \) distribution with \(\nu \) degrees of freedom, truncated on the interval \([\xi, \bar{\xi}]\), where \(0 < \xi < \xi < \infty \). Then, it is shown via Lemma 2 in the Appendix that \(\frac{Z}{\sqrt{W/\nu}} \equiv Y \) obeys the dampened \(t \) distribution with density Eq. (23). It is this construction that we exploit to analytically derive the moment generating function of \(Y_{t+1} \) and show that it exists and is well-defined.

3.3. Finiteness of the moment generating function of consumption growth

Our innovation is that asset pricing quantities can be evaluated using the moment generating function of \(g^{DT}(Y_{t+1}; \nu, \xi, \bar{\xi}) \), a task that cannot be accomplished under the Student-\(t \) distribution. Suppressing time subscripts on \(\nu_t, \xi_t, \bar{\xi}_t, A_t \) and \(B_t \) we now state the next important result.

Theorem 3 For the predictive density of \(Y_{t+1} = X_{t+1} - \mu/\sqrt{BA^{-1}} \) specified in Eq. (23), the moment generating function is

\[
\Psi_Y[\lambda] \equiv E_t \left(e^{\lambda Y_{t+1}} \right) = \int_{-\infty}^{\infty} e^{\lambda Y_{t+1}} g^{DT}(Y_{t+1}; \nu, \xi, \bar{\xi}) \, dY_{t+1}, \tag{28}
\]

\[
= \frac{1}{c \left[\nu, \xi, \bar{\xi} \right]} \int_{\xi}^{\bar{\xi}} e^{\frac{\lambda}{2\nu} w^{\nu} - \frac{\lambda}{2} w} \, dw, \tag{29}
\]

where \(c \left[\nu, \xi, \bar{\xi} \right] = 2^{\nu/2} \left(\Gamma \left[\nu/2, \xi/2 \right] - \Gamma \left[\nu/2, \bar{\xi}/2 \right] \right) \), \(\nu = 2A, \xi = 2\varphi B, \) and \(\bar{\xi} = 2\varphi B \). The moment generating function of consumption growth \(X_{t+1} = \mu + \sqrt{BA^{-1}} Y_{t+1} \) is then

\[
\Psi_X[\lambda] = e^{\mu \lambda} \Psi_Y[\lambda \sqrt{BA^{-1}}]. \tag{30}
\]

All odd-order moments of \(Y_{t+1} \) are equal to zero. The even-order moments of \(Y_{t+1} \) are given by

\[
E_t \left(Y_{t+1}^{2\phi} \right) = \frac{(2\phi)!}{\phi!} \left(\frac{\nu}{2} \right)^{\phi} \frac{1}{c \left[\nu, \xi, \bar{\xi} \right]} \int_{\xi}^{\bar{\xi}} w^{\nu - \phi} e^{-\frac{\lambda}{2} w} \, dw < \infty, \text{ for any positive integer } \phi.
\]

Proof: See the Appendix. □

Unlike the Student-\(t \) distribution, which does not possess a finite moment generating function, the dampened \(t \) distribution is shown to have a finite moment generating function for \(0 < \xi < \xi < \infty \).

At the crux of Theorem 3 is the statement that the moment generating function is the integral of a continuous function over a compact support and, consequently, is finite (e.g., Lukacs, 1960). Well-defined preferences and marginal rate of substitution in the economy hinge on the finiteness of \(\Psi_X[\lambda] \).
4. Can structural uncertainty resolve asset pricing puzzles?

Under structural parameter uncertainty, where the consumption growth volatility σ_t has support $[\sigma, \bar{\sigma}]$, and Bayesian learning, the operational version of the theory shows that the primitive distribution for consumption growth, which is Normal, gets transformed to a dampened t distribution. Tail thickening of the predictive consumption growth distribution induced by structural parameter uncertainty can, in principle, exert a substantial impact on asset pricing quantities through the marginal rate of substitution.

To see the restrictions imposed by the present theory, we note that the risk-free return and the equity risk premium can both be obtained from the moment generating function of consumption growth, $\Psi_X[\lambda]$. Guided by Eqs. (15) and (16), we obtain:

$$\ln(R^t_{t+1}) = -\ln(\beta) - \ln(\Psi_X[-\alpha]),$$

(31)

$$\ln(E_t(R^t_{t+1})) - \ln(R^t_{t+1}) = \ln(\Psi_X[1]) - \ln(\Psi_X[1-\alpha]) + \ln(\Psi_X[-\alpha]),$$

(32)

where $\Psi_X[\lambda]$ is presented in Eq. (30) of Theorem 3. The special feature of this economy with subjective expectations is that it supports a finite moment generating function of X_{t+1}. Therefore, the contribution of our approach lies in that asset pricing quantities are computable, which is essential for conducting quantitative analysis.

Economic theory now suggests that the equity risk premium and the risk-free return are both linked to the parameters of the dampened t distribution. In particular, the asset pricing quantities are determined by (A_t, B_t, ξ_t, ξ^*), which jointly control the mean, volatility, and truncation points of the belief process. Accounting for subjective expectations expands the traditional consumption-based asset pricing model.

The tractability of our construction allows us to pose and answer outstanding questions of broad interest: What is the quantitative impact of subjective expectations on asset pricing? What level of a priori structural uncertainty is required for resolving asset pricing puzzles? In what sense does structural uncertainty quantitatively map into consumption disaster fears? Operationalizing the theory, as established in Theorems 1 through 3, enables us to address these questions, a task not feasible in the environment of Weitzman (2007).
4.1. Plausible structural uncertainty does not profoundly affect asset pricing quantities

In our quantitative assessments, we rely on the assumption of a long history of past observations that yields $2A_t = k - 1$ and $B_tA_t^{-1} = V_t$. We use benchmark values that are in line with the existing literature (e.g., Mehra and Prescott, 1985; Barro, 2006; and Weitzman, 2007):

$\mu = 2\%, \quad \sqrt{V} = 2\%, \quad \beta = 0.98, \quad k \in \{10, 30, 50\}, \quad \sigma = 1/\sqrt{\theta} = 0.1\%.$

The lower bound $\sigma = 1/\sqrt{\theta}$ is not essential, in the sense that asset pricing quantities are not affected by reasonable changes in σ, and is, therefore, held fixed. The effective sample size k is selected to cover a range of reasonable values. In terms of subjective expectations, k measures how much confidence the investor places in the variance estimate, and at the same time it controls the degrees of freedom and, therefore, the tail thickness of the predictive distribution of consumption growth.

Table 1 first assesses the quantitative impact of subjective expectations on $\ln(R_{t+1}^f)$ and $\ln(E_t(R_{t+1}^e)) - \ln(R_{t+1}^f)$ by adopting risk aversion $\alpha \in \{2, 3, 5, 10\}$. Considering that the average historical volatility of consumption growth is 2%, the maximum allowable level of consumption growth volatility is fixed at $\overline{\sigma} = 1/\sqrt{\theta} = 50\%$.

INSERT TABLE 1 HERE

According to the evidence in Table 1, the effect of subjective expectations on asset pricing quantities is barely noticeable over reasonable levels of $\overline{\sigma}$, $\overline{\sigma}$, and α. Moreover, the risk-free return and the equity premium are almost identical between the case $k = 50$ and the full information Normal distribution benchmark. Finally, lower levels of k tend to decrease both the risk-free return and the equity return, more so for the risk-free return.

We also find that the response of the risk-free return and the equity premium to $\overline{\sigma}$ is flat up to $\overline{\sigma} = 190\%$ for $\alpha \in (2, 10)$ with $k = 50$, which we consider to be a reasonable candidate for the effective sample size. To save on space, all results are henceforth reported for $k = 50$.

When excessive levels of structural uncertainty are permitted to influence asset pricing, both $\ln(R_{t+1}^f)$ and $\ln(E_t(R_{t+1}^e)) - \ln(R_{t+1}^f)$ change rapidly with small shifts in $\overline{\sigma}$ as seen from Fig. 3. Possibly rectifying the shortcomings of the consumption-based asset pricing model, the presence of structural uncertainty now sharply lowers the risk-free return and raises the equity risk premium. Consider $\alpha = 3$ in Fig. 3 to illustrate.
the main ideas. At a value of $\overline{\sigma} = 762.50\%$, $\ln(R_{t+1}^f) = 6.68\%$ and $\ln(E_t(R_{t+1}^e)) - \ln(R_{t+1}^f) = 1.28\%$, while at $\overline{\sigma} = 766.50\%$ the counterpart values are -5.28% and 13.24%. The model behavior is knife-edge sensitive at large levels of structural uncertainty, regardless of the magnitude of risk aversion. Specifically, as the support of the precision distribution is enlarged, the posterior converges to the Student-t distribution, and, as a result, the equity premium (risk-free return) can admit arbitrarily large (small) values.

[Fig. 3 about here.]

In summary, Table 1 and Fig. 3 together give rise to two inferences about the implications of subjective expectations for asset pricing. First, the particularly parameterized structural uncertainty model operationalized here does not produce a significant change in the asset pricing quantities, unless excessive a priori uncertainty is entertained. Second, the model-implied magnitudes of the asset pricing quantities fall short of their historical counterparts, even though the dampened t distribution is virtually indistinguishable from the Student-t distribution. The conclusions remain robust even when consumption growth volatility is set to $\sqrt{V} = 3.5\%$ as in Barro (2006). For instance, when $k = 10$ and $\alpha = 10$, the model equity premium is 1.78% and the risk-free return is 13.56%.

4.2. Explain the equity premium of 6% and the risk-free return of 1% is still challenging

Results presented in Table 2 are at the heart of asset pricing puzzles. In Panel A, we numerically search over the maximum level of consumption growth volatility, $\overline{\sigma}$, required to match the 6% average equity risk premium. When α is restricted between two and ten, the range of $\overline{\sigma}$ required to match the equity risk premium varies between 199.3% and 1,193.5%. Most financial economists hold the view that α should lie somewhere between two and ten (e.g., Mehra and Prescott, 1985; and Kocherlakota, 1996).

INSERT TABLE 2 HERE

The inability of the model to match economic theory with data is also implicit in the corresponding values of risk-free return when the equity risk premium is matched to 6%. In particular, the simultaneous justification of asset returns data requires levels of $\overline{\sigma}$ between 765.4% and 1,193.5% when α is confined between two and three. In sum, a mismatch still exists when asset pricing theory incorporating subjective expectations is applied to data from financial markets.

Panel B of Table 2 conducts the analog exercise in which we search over the maximum level of con-
assumption growth volatility, σ, to match the risk-free return of 1% for a given α. The deficiencies of the model manifest themselves from a different perspective: declining values of σ that coincide with increasing α also imply increasing equity risk premium to maintain the target risk-free return of 1%.

To reiterate, a reasonably parameterized asset pricing model under subjective uncertainty about the volatility of consumption growth faces a formidable hurdle in explaining the equity risk premium and the real risk-free return simultaneously. The level of structural uncertainty required to resolve asset pricing puzzles in the model is, in our view, beyond any reasonable norm.

4.3. Priors yielding similar disaster probabilities have vastly different asset pricing implications

How does the maximum volatility level $\sigma = 1/\sqrt{\theta}$ relate to probabilities of consumption disasters, as mentioned in Weitzman (2007)? Consider the possibility of a rare disaster x_{rare}, which represents a deviation from mean consumption growth in multiples of volatility:

$$x_{\text{rare}} = \mu - h \sqrt{V},$$ \hspace{1cm} (33)$$

where the multiple $h \in \{3, 4, 5, 6\}$, $\mu = 2\%$, and $\sqrt{V} = 2\%$. For instance, a five-sigma downside event corresponds to $h = 5$ and implies a 8% drop in the level of consumption.

Our model setup facilitates computation of rare event probabilities. Specifically, it is shown in the Appendix that

$$\text{Prob}(X_{t+1} \leq x_{\text{rare}}) = \text{Prob}(Y_{t+1} \leq -h) = \frac{1}{c_{\nu, \xi, \xi}} \int_{-\infty}^{\xi} N \left(-h \sqrt{w/v} \right) w^{\frac{\nu-1}{2}} e^{-\frac{w}{2}} dw,$$ \hspace{1cm} (34)$$

where $\nu = k - 1$ is the degrees of freedom, $\xi = \frac{(k-1)\nu}{\sigma^2}$, $\xi = \frac{(k-1)\nu}{\sigma^2}$, and $N(d) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-u^2/2} du$ is the standard Normal cumulative distribution function.

Table 3 presents the probabilities of rare disasters as a function of the maximum level of consumption growth volatility. Specifically, we present the probabilities corresponding to the Normal distribution, the dampened t distribution, and the Student-t distribution.

INSERT TABLE 3 HERE

The crucial attribute to note is that the maximum allowable level of consumption growth volatility does
not materially affect the probabilities of rare disasters in the model. Explaining the equity premium in the model with reasonable α requires a maximum level of consumption growth volatility in excess of 765%, and these implausible prior beliefs have in common disaster probabilities that are indistinguishable from those implied by more realistic priors.

At the same time, as the analysis of the previous two subsections reveals, the two different sets of prior beliefs, involving low and very high truncation levels $\overline{\sigma}$, have diametrically opposite asset pricing implications: one contradicting, and the other asserting, the antipuzzle view. Our explicit quantification of the equity premium, along with the rare disaster probabilities, possibly provides a reason to challenge the argument offered in Weitzman (2007) that large levels of equity premium are somehow compensation for structural uncertainty and consumption disaster fears, under the postulated asset pricing framework.

5. Conclusions

In this paper, we contribute to the literature on asset pricing models with Bayesian learning by providing an operational version of the structural uncertainty approach that features a compact support for consumption growth volatility. Our setting incorporates realistic priors about consumption growth volatility and has substantial economic consequences. First, it guarantees finite asset pricing quantities. Second, it allows characterization of the Bayesian predictive density for consumption growth that is virtually indistinguishable from the heavy-tailed Student-t distribution but, importantly, possesses a finite moment generating function. The resulting asset pricing model with subjective expectations yields finite expected utility and tractable expressions for equity premium and risk-free return. In this setting, embedding structural uncertainty induces a heavy-tailed predictive distribution for consumption growth without introducing jumps in the consumption growth process.

The availability of the moment generating function for the predictive distribution of consumption growth renders quantitative evaluation feasible. Applying economic theory in the context of subjective expectations reveals that explaining the historical equity premium and risk-free return requires extreme levels of a priori uncertainty about consumption growth volatility. Furthermore, these implausible prior beliefs give rise to disaster probabilities that almost coincide with those implied by more realistic priors. However, the two sets of prior beliefs have diametrically opposite asset pricing implications: one asserting, and the other contradicting, the antipuzzle view favored by Weitzman (2007).
The scope of the approach developed here can be expanded along several directions to enhance understanding of how subjective expectations impact asset prices. First, the asset pricing framework can be extended to investigate higher-dimensional structural uncertainty, where the agent faces uncertainty not only about consumption growth volatility, but also about other aspects of the distribution. Second, the effect of more realistic consumption growth dynamics can be explored by accommodating serial correlation in the specification of the consumption growth process (e.g., Barsky and DeLong, 1993; and Tsionas, 2005). Finally, further insights could be gained by considering richer pricing kernel specifications such as those resulting from alternative preference structures (e.g., Constantinides, 1990; Epstein and Zin, 1991; and Campbell and Cochrane, 1999). These extensions are left for future work.
Appendix: Proof of Results

Distribution of the multiplicative shock δ_{t+1} in Eq. (19). What we specify first is the distribution of the multiplicative shock δ_{t+1} that guarantees the conjugacy of the system while ensuring that the support of the precision process θ_t remains $[\overline{\theta}, \overline{\theta}]$ through time.

To appreciate our generalization, let us momentarily return to the Weitzman (2007) model in which the precision process θ_t evolves according to the transition equation $\theta_{t+1} = \frac{1}{\overline{\omega}} \eta_{t+1} \theta_t$ as in Eq. (6). Importantly, when θ_t satisfies $\theta_t | X' \sim \text{Gamma}(a_t, b_t)$ and the multiplicative shock η_{t+1} follows a Beta$(\omega a_t, (1 - \omega) a_t)$ distribution, then $\theta_{t+1} | X' \sim \text{Gamma}(A_t, B_t)$, where $A_t = \omega a_t$ and $B_t = \omega b_t$. Such a structure preserves conjugacy of the system through time.

To provide the details of the specification of the multiplicative shock δ_{t+1} in Eq. (19), we introduce some additional notation. Conditionally on X', let $f_t(\cdot)$ and $G_t(\cdot)$ denote the probability density function (pdf) and cumulative distribution function (cdf) of θ_t, respectively. Similarly, given X', let $g_t(\cdot)$ and $G_t(\cdot)$ denote the pdf and cdf of θ_{t+1}, respectively. That is, $f_t(\cdot)$ is the Gamma(a_t, b_t) density and $g_t(\cdot)$ is the Gamma$(\omega a_t, \omega b_t)$ density. Furthermore, let $h_t(\theta_t, \theta_{t+1})$ denote the joint pdf of (θ_t, θ_{t+1}), conditionally on X'. This implies that the two marginal distributions associated with the joint density h_t are f_t and g_t, respectively.

Now denote by f_t and \mathfrak{f}_t the pdf and cdf of the truncated Gamma TG$(a_t, b_t; \overline{\theta}, \overline{\theta})$ distribution, respectively. Furthermore, denote by g_t and G_t the pdf and cdf of the truncated Gamma TG$(\omega a_t, \omega b_t; \overline{\theta}, \overline{\theta})$ distribution, respectively. When $\overline{\theta} \to 0$ and $\overline{\theta} \to \infty$, the TG density f_t converges to the Gamma density f_t, and the TG density g_t converges to the Gamma density g_t.

The distribution of the multiplicative shock δ_{t+1} is then defined as follows. Given $\overline{\theta}_t$ and X', the conditional pdf of δ_{t+1} is

$$p(\delta_{t+1} | \overline{\theta}_t, X') = \frac{\overline{\theta}_t}{\overline{\omega}} \cdot g_t \left(\frac{1}{\overline{\omega}} \overline{\theta}_t \delta_{t+1} \right) \cdot h_t \left(F_t^{-1}(\mathfrak{f}_t(\theta_t)), G_t^{-1}(G_t(\frac{1}{\overline{\omega}} \overline{\theta}_t \delta_{t+1})) \right) \cdot f_t \left(F_t^{-1}(\mathfrak{f}_t(\theta_t)) \right) \cdot g_t \left(G_t^{-1}(G_t(\frac{1}{\overline{\omega}} \overline{\theta}_t \delta_{t+1})) \right).$$

While Eq. (35) might seem complicated, it is a generalization of the Beta distribution used for the multiplicative shock in the case of the (untruncated) Gamma precision process θ_t. In the limit $\overline{\theta} \to 0$ and $\overline{\theta} \to \infty$, the conditional density Eq. (35) converges to the Beta$(\omega a_t, (1 - \omega) a_t)$ distribution, namely, the distribution of the multiplicative shock η_{t+1} in Weitzman (2007). To establish this property, we build Lemma 1.
Lemma 1 The joint pdf $h_t(\cdot, \cdot)$ of (θ_t, θ_{t+1}), conditionally on X', is given by

$$h_t(\theta_t, \theta_{t+1}) = \frac{\omega}{\Gamma(\omega \alpha_t) \Gamma((1-\omega) \alpha_t)} b_t^{\alpha_t} e^{-b_t \theta_t} \cdot (\omega \theta_{t+1})^{\omega \alpha_t-1} (\theta_t - \omega \theta_{t+1})^{(1-\omega) \alpha_t-1}, \quad (36)$$

where $0 < \theta_{t+1} < \frac{\omega}{\omega_t}$.

Proof of Lemma 1. The pdf of θ_t, given X', is the Gamma(α_t, b_t) density, i.e., $p(\theta_t|X') = \frac{b_t^{\alpha_t}}{\Gamma(\alpha_t)} \theta_t^{\alpha_t-1} e^{-b_t \theta_t}$. Because $\theta_{t+1} = \frac{1}{\omega} \eta_{t+1} \theta_t$ and $\eta_{t+1} \sim$ Beta($\omega \alpha_t, (1-\omega) \alpha_t$) with density $k_t(\eta) = \frac{1}{\omega \alpha_t, (1-\omega) \alpha_t} \eta^{\omega \alpha_t-1} (1-\eta)^{(1-\omega) \alpha_t-1}$, it follows that

$$p(\theta_{t+1}|\theta_t, X') = \frac{\omega}{\theta_t} k_t \left(\frac{\omega}{\theta_t} \theta_{t+1} \right) = \frac{\omega}{\theta_t} \frac{1}{B(\omega \alpha_t, (1-\omega) \alpha_t)} \left(\frac{\omega}{\theta_t} \theta_{t+1} \right)^{\omega \alpha_t-1} \left(1 - \frac{\omega}{\theta_t} \theta_{t+1} \right)^{(1-\omega) \alpha_t-1}. \quad (37)$$

By noting that $h_t(\theta_t, \theta_{t+1}) = p(\theta_t, \theta_{t+1}|X') = p(\theta_{t+1}|\theta_t, X')p(\theta_t|X')$ proves the result. \hfill \Box

In the limiting case with $\omega_t \to 0$ and $\omega \to \infty$, we have $f_t \to f_t$, $\delta_t \to F_t$, and $g_t \to g_t$, $\Theta_t \to G_t$. Hence, the density $p(\delta_{t+1}|\delta_t)$ converges to $\frac{\omega_t}{\omega} h_t(\delta_t, \frac{1}{\omega} \delta_{t+1})$. The density $f_t(\delta_t)$ is given by $f_t(\delta_t) = \frac{b_t^{\alpha_t}}{\Gamma(\alpha_t)} \delta_t^{\alpha_t-1} e^{-b_t \delta_t}$ and Lemma 1 implies that

$$h_t \left(\frac{\delta_t}{\omega}, \frac{1}{\omega} \delta_{t+1} \right) = \frac{\omega}{\Gamma(\omega \alpha_t) \Gamma((1-\omega) \alpha_t)} b_t^{\alpha_t} e^{-b_t \delta_t} \cdot (\omega \delta_{t+1})^{\omega \alpha_t-1} (1 - \omega \delta_{t+1})^{(1-\omega) \alpha_t-1}. \quad (38)$$

Thus, as $\omega_t \to 0$ and $\omega \to \infty$, the limit of $p(\delta_{t+1}|\delta_t)$ is

$$\frac{\omega_t}{\omega} h_t \left(\frac{\delta_t}{\omega}, \frac{1}{\omega} \delta_{t+1} \right) = \frac{\Gamma(\alpha_t)}{\Gamma(\omega \alpha_t) \Gamma((1-\omega) \alpha_t)} \delta_{t+1}^{\omega \alpha_t-1} (1 - \omega \delta_{t+1})^{(1-\omega) \alpha_t-1}, \quad (39)$$

which is simply the Beta($\omega \alpha_t, (1-\omega) \alpha_t$) density of the multiplicative shock η_{t+1} in Weitzman (2007). Thus, the choice of δ_{t+1}, δ_t and δ_{t+1} ensures the internal consistency of the system and yet maintains the conjugacy of δ_t and δ_{t+1}, as verified next.

Proof of Theorem 1 (posterior distribution of δ_{t+1} given X'). It is shown that the conditional distribution of δ_t, given X', is TG($A_t, B_t; \delta_t, \delta_{t+1}$), where $A_t = \omega \alpha_t = \omega (A_{t-1} + \frac{1}{2})$ and $B_t = \omega b_t = \omega \left(B_{t-1} + \frac{(X_t-\mu)^2}{2} \right)$.

First, observe that the conditional distribution of $\tilde{\theta}_t$ given X' is given by

$$p(\tilde{\theta}_t | X') \propto p(X', \tilde{\theta}_t) = p(X_t | \tilde{\theta}_t) p(\tilde{\theta}_t | X_t^{-1})$$

Using the transformation $\psi_t(\tilde{\theta}_t, \delta_{t+1}) = \frac{\tilde{\theta}_t}{\omega} \cdot g_t \left(\frac{1}{\omega} \cdot \tilde{\theta}_t, \delta_{t+1} \right)$, we obtain

$$h_t (F_t^{-1}(\tilde{\theta}_t)), G_t^{-1}(\Theta_t (\frac{1}{\omega} \cdot \tilde{\theta}_t, \delta_{t+1}))$$

Given the conditional density $f_t(\cdot)$, we can now exploit the Jacobian of the appropriate two-dimensional transformation. Specifically, if (X', Y) has joint pdf $f_{X',Y}(x,y)$ and $(W, Z) = (X, \frac{1}{\omega} X Y)$, then the joint pdf of (W, Z) is $f_W Z (w,z) = c \cdot f_{X,Y} (w, c \cdot z)$. Consequently, the joint pdf of $(\tilde{\theta}_t, \delta_{t+1})$, conditionally on X', is

$$h_t (\tilde{\theta}_t, \delta_{t+1}) = f_t(\tilde{\theta}_t) \cdot g_t (\tilde{\theta}_t, \delta_{t+1})$$

The marginal density of $\tilde{\theta}_t$, given X', is then obtained by integrating out δ_{t+1}:

$$p(\tilde{\theta}_t | X') = \int h_t (\tilde{\theta}_t, \delta_{t+1}) d\delta_{t+1}.$$

Using the transformation $\zeta_t = F_t^{-1}(\tilde{\theta}_t)$, we obtain $F_t(\zeta_t) = \tilde{\theta}_t$ and then differentiation yields $f_t(\zeta_t) d\zeta_t = f_t(\tilde{\theta}_t) d\tilde{\theta}_t$. Hence, the above integral reduces to

$$\int h_t (\tilde{\theta}_t, \delta_{t+1}) d\tilde{\theta}_t = \frac{g_t (\tilde{\theta}_t, \delta_{t+1})}{G_t^{-1}(\Theta_t (\tilde{\theta}_t, \delta_{t+1}))} \cdot \int h_t (\zeta_t, G_t^{-1}(\Theta_t (\tilde{\theta}_t, \delta_{t+1}))) d\zeta_t. \tag{43}$$

The second marginal density associated with h_t is g_t, and so $\int h_t(\zeta_t, \delta_{t+1}) d\zeta_t = g_t(\delta_{t+1})$. It follows that

$$p(\tilde{\theta}_{t+1} | X') = \int h_t (\tilde{\theta}_t, \delta_{t+1}) d\tilde{\theta}_t = g_t (\delta_{t+1}), \tag{44}$$

and so the conditional distribution of $\tilde{\theta}_t$, given X', is $TG(\tilde{\theta}_t, B_t; \Theta, \ddot{\Theta})$, where $A_t = \omega \cdot A_{t-1} + \frac{1}{2}$ and $B_t = \omega b_t = \omega \left(B_{t-1} + \frac{(X_t - \mu)^2}{2} \right)$.
Proof of Theorem 2. The predictive distribution of X_{t+1}, given X_t, is

$$ g(X_{t+1}|X') = \int p(X_{t+1}|\Theta_{t+1}) p(\Theta_{t+1}|X') d\Theta_{t+1} \quad (45) $$

$$ = \int_{\theta} p(X_{t+1}|\theta) \exp \left(-\frac{\theta_{t+1} (X_{t+1} - \mu)^2}{2} \right) \theta_{t+1}^{-\nu_{t+1}} e^{-B_{t} \theta_{t+1}} d\theta_{t+1} \quad (46) $$

$$ = \int_{\theta} \theta_{t+1}^{(\nu_{t+1} - 1)} \exp \left(-\left(B_{t} + \frac{(X_{t+1} - \mu)^2}{2} \right) \theta_{t+1} \right) d\theta_{t+1}. \quad (47) $$

Because $\nu_{t} = 2A_{t}$, $B_{t} + \frac{(X_{t+1} - \mu)^2}{2} = B_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right)$. Using the transformation $u = B_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right) \theta_{t+1}$, we obtain that

$$ g(X_{t+1}|X') \propto \int \frac{1}{(B_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right))^{\frac{\nu_{t+1}}{2}}} \gamma \left(\frac{\nu_{t+1} + 1}{2}, \frac{1}{2} \xi_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right) \right) \gamma \left(\frac{\nu_{t+1} + 1}{2}, \frac{1}{2} \xi_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right) \right) \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right), \quad (48) $$

$$ = \int \frac{1}{(B_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right))^{\frac{\nu_{t+1}}{2}}} \gamma \left(\frac{\nu_{t+1} + 1}{2}, \frac{1}{2} \xi_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right) \right) \gamma \left(\frac{\nu_{t+1} + 1}{2}, \frac{1}{2} \xi_{t} \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right) \right) \left(1 + \frac{\nu_{t+1}}{\nu_{t}}\right), \quad (49) $$

where $\xi_{t} = 2B_{t}$, $\xi_{t} = 2B_{t}$, and $\gamma[\rho, \kappa] = \int_{0}^{\kappa} \rho^{\rho-1} e^{-\rho} d\rho$ is the lower incomplete Gamma function. Hence, $Y_{t+1} = (X_{t+1} - \mu)/\sqrt{B_{t}A_{t}^{-1}}$ follows a dampened t distribution with ν_{t} degrees of freedom and truncation parameters ξ_{t} and ξ_{t}.

Proof of an alternative representation of the predictive density of Y_{t+1} in Eq. (23).

Lemma 2 Define

$$ Y = \frac{Z}{\sqrt{W/\nu}}, \quad (50) $$

where

- the random variable Z follows a standard Normal distribution;
- the random variable W follows a χ^{2} distribution with ν degrees of freedom, truncated on the interval $(\xi_{t}^{2}, \xi_{t}^{2})$, where $0 < \xi_{t} < \xi_{t} < \infty$; and
- Z and W are independent random variables.

Then Y has a density function that coincides with the predictive density Eq. (23) obtained from an asset pricing model subject to structural uncertainty.
Proof of Lemma 2. We present a proof of this isomorphism as the construction allows us to establish that the moment generating function of Y_{t+1} is well-defined. The densities of Z and W are given by

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty, \quad (51)$$

$$f_W(w) = \frac{1}{c_{\nu, \xi_1, \xi_2}} w^{\frac{\nu}{2} - 1} e^{-\frac{w^2}{2}}, \quad \frac{\xi_2}{2} < w < \frac{\xi_1}{2}, \quad (52)$$

where $c_{\nu, \xi_1, \xi_2} = 2^{\nu/2} \left(\gamma \left[\nu/2, \xi_1/2 \right] - \gamma \left[\nu/2, \xi_2/2 \right] \right)$ ensures that $f_W(w)$ is a proper density. Define the random variable $R = \sqrt{W/\nu}$. The density of R is seen to be

$$f_R(r) = 2\nu f_W(\nu r^2) = \frac{2\nu \gamma^{\nu}}{c_{\nu, \xi_1, \xi_2}} r^{\nu-1} e^{-\frac{\nu r^2}{2}}, \quad \sqrt{\frac{\xi_2}{2}/\nu} < r < \sqrt{\frac{\xi_1}{2}/\nu}. \quad (53)$$

Adopt the following two transformations,

$$Y = \frac{Z}{R} \quad \text{and} \quad Q = R, \quad (54)$$

so that $(Y, Q) = g(Z, R)$, where $g(z, r) = (z/r, r)$. A transformation argument using the Jacobian of g^{-1} yields that the joint density of (Y, Q) is

$$f_{Y,Q}(y, q) = f_{Z, R}(yq, q)q = f_Z(yq) f_R(q)q,$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{(yq)^2}{2}} \frac{2\gamma^{\nu}}{c_{\nu, \xi_1, \xi_2}} q^{\nu-1} e^{-\frac{\nu q^2}{2}} q = \frac{1}{\sqrt{2\pi}} \frac{2\gamma^{\nu}}{c_{\nu, \xi_1, \xi_2}} q^{\nu} e^{-\frac{(yq)^2}{2}} q^2,$$

for $-\infty < y < \infty$ and $\sqrt{\frac{\xi_2}{2}/\nu} < q < \sqrt{\frac{\xi_1}{2}/\nu}$. To obtain the density of Y, integrate $f_{Y,Q}(y, q)$ over q as

$$f_Y(y) = \int_{\sqrt{\frac{\xi_2}{2}/\nu}}^{\sqrt{\frac{\xi_1}{2}/\nu}} f_{Y,Q}(y, q) dq,$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2\gamma^{\nu}}{c_{\nu, \xi_1, \xi_2}} \int_{\sqrt{\frac{\xi_2}{2}/\nu}}^{\sqrt{\frac{\xi_1}{2}/\nu}} q e^{-\frac{(yq)^2}{2}} dq. \quad (56)$$
Letting \(s = \frac{(v+y)^2}{2} \), we obtain \(q = \left(\frac{2}{v+y} \right)^{\frac{1}{2}} s^{\frac{1}{2}} \) and \(dq = \frac{1}{2} \left(\frac{2}{v+y} \right)^{\frac{1}{2}} s^{-\frac{1}{2}} ds \). Therefore,

\[
\int_{\frac{v+y}{2}}^{\frac{v+y}{2}} q^\nu e^{-\frac{q^2}{2}} dq = \int_{\frac{v+y}{2}}^{\frac{v+y}{2}} \frac{\nu}{2} \left(\frac{2}{v+y} \right)^{\frac{1}{2}} s^{\nu} e^{-s} \left(\frac{2}{v+y} \right)^{\frac{1}{2}} s^{-\frac{1}{2}} ds,
\]

\[
= \frac{2^{\nu-1}}{(v+y)^{\nu-1}} \int_{\frac{v+y}{2}}^{\frac{v+y}{2}} s^{\nu-1} e^{-s} ds.
\]

Accordingly,

\[
\int_{\frac{v+y}{2}}^{\frac{v+y}{2}} q^\nu e^{-\frac{q^2}{2}} dq = \left(\frac{2^\nu}{(v+y)^{\nu-1}} \right) \left(\Gamma \left[\frac{v+1}{2}, \frac{1}{2} \xi \left(1 + \frac{v^2}{v+y} \right) \right] - \Gamma \left[\frac{v+1}{2}, \frac{1}{2} \xi \left(1 + \frac{v^2}{v+y} \right) \right] \right).
\]

Substitution of Eq. (59) into Eq. (57), along with the fact that \(c \left[v, \xi, \xi \right] = 2^{\nu/2} \left(\gamma \left[v/2, \xi/2 \right] - \gamma \left[v/2, \xi/2 \right] \right) \), proves our assertion. That is,

\[
f_Y(y) = \frac{\gamma \left[\frac{v+1}{2}, \frac{1}{2} \xi \left(1 + \frac{v^2}{v+y} \right) \right] - \gamma \left[\frac{v+1}{2}, \frac{1}{2} \xi \left(1 + \frac{v^2}{v+y} \right) \right]}{\sqrt{\pi \nu} \left(\gamma \left[v/2, \xi/2 \right] - \gamma \left[v/2, \xi/2 \right] \right)}.
\]

Therefore, the random variable \(Y = \frac{Z}{\sqrt{W/\nu}} \) has the same density as the predictive density of \(Y_{t+1} \) derived in Eq. (23).

Proof of Theorem 3. Instead of using the predictive density Eq. (23) to derive the moment generating function, we appeal to the properties of \(Y = \frac{Z}{\sqrt{W/\nu}} \), which shares the same density function as shown in Lemma 2. Recall that \(Z \) and \(W \) are independent random variables, where \(Z \) follows a standard Normal distribution and \(W \) follows a truncated chi-square distribution. Based on the law of iterated expectations,

\[
E \left(e^{\lambda Y} \right) = E \left(\exp \left(\lambda Z / \sqrt{W/\nu} \right) \right),
\]

\[
e E \left(\exp \left(\frac{\lambda \sqrt{\nu}}{\sqrt{W}} Z \right) \right) = E \left(\exp \left(\frac{\lambda \sqrt{\nu}}{\sqrt{W}} \right) \right) \text{ (from the mgf of standard normal)},
\]

where the expectation in Eq. (63) is to be taken with respect to the chi-squared distribution. Verifying Eq.
(29) we have

\[E(e^{\lambda Y}) = E\left(\exp\left(\frac{\lambda^2 v}{2W}\right)\right) = \frac{1}{c_{\nu, \xi, \xi}} \int_{\frac{\nu}{2}}^{\xi} e^{\frac{\lambda^2 v}{2W} w^{\frac{\nu}{2}} - 1} e^{-\frac{w}{W}} dw, \quad (64) \]

where \(c_{\nu, \xi, \xi} = 2^{\nu/2} \left(\gamma\left[\nu/2, \xi/2\right] - \gamma\left[\nu/2, \xi/2\right]\right) \) is a constant of integration. Now,

\[E(Y^{2\phi}) = E\left(\left(\frac{\lambda Z}{\sqrt{W/v}}\right)^{2\phi}\right) = v^{\phi} E(\nu) E\left(1\right) = v^{\phi} \frac{(2\phi)!}{\phi! 2^\phi} E\left[\frac{1}{W^{\phi}}\right], \quad (65) \]

\[= \left(\frac{\nu}{2}\right)^{\phi} \frac{(2\phi)!}{\phi!} \frac{1}{c_{\nu, \xi, \xi}} \int_{\xi}^{\xi} w^{-\phi} w^{\nu/2 - 1} e^{-\frac{w}{W}} dw. \quad (66) \]

Finally, the odd-order moments of \(Y \) are zero because the density is symmetric around zero. ■

Proof of the rare event probabilities in Eq. (34). Let \(x^{\text{rare}} = \mu - h \sqrt{V} \), where the volatility multiple \(h \) represents the deviation from mean consumption growth. Thus, from Lemma 2,

\[\text{Prob}(X_{t+1} \leq x^{\text{rare}}) = \text{Prob}(Y_{t+1} \leq -h) = \text{Prob}(\frac{Z}{\sqrt{W/v}} \leq -h), \quad (67) \]

\[= E\left(\text{Prob}\left(Z \leq -h \sqrt{W/v}\right)\right), \quad (68) \]

\[= E\left(N\left(-h \sqrt{W/v}\right)\right), \quad (69) \]

\[= \frac{1}{c_{\nu, \xi, \xi}} \int_{\xi}^{\xi} N\left(-h \sqrt{W/v}\right) w^{\nu/2 - 1} e^{-\frac{w}{W}} dw, \quad (70) \]

where \(N(d) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-u^2/2} du \) is the standard Normal cdf. ■
References

Table 1
Risk-free return and equity premium when the maximum consumption growth volatility, σ, is 50%

Reported are the risk-free return and the equity premium under structural uncertainty and Bayesian learning. The computation relies on the following parameter inputs:

\[
\mu = 2\%, \quad \sqrt{\nu} = 2\%, \quad k \in \{10, 30, 50\}, \quad \beta = 0.98, \quad \sigma = 1/\sqrt{\theta} = 0.1\%, \quad \bar{\sigma} = 1/\sqrt{\theta} = 50\%.
\]

The Normal distribution corresponds to the case of no structural uncertainty and is reported in the row labeled “Normal.” We compute the risk-free return as

\[
\ln(R^f_{t+1}) = -\ln(\beta) - \ln(\Psi_X[-\alpha])
\]

and the equity risk premium as

\[
\ln(E_t(R^e_{t+1})) - \ln(R^f_{t+1}) = \ln(\Psi_X[1]) - \ln(\Psi_X[1-\alpha]) + \ln(\Psi_X[-\alpha]),
\]

where $\Psi_X[\lambda]$ is presented in Eq. (30) of Theorem 3. α is the coefficient of relative risk aversion.

<table>
<thead>
<tr>
<th>α</th>
<th>Effective sample size</th>
<th>Risk-free return</th>
<th>Expected return</th>
<th>Equity premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>k = 10</td>
<td>5.91%</td>
<td>6.02%</td>
<td>0.11%</td>
</tr>
<tr>
<td></td>
<td>k = 30</td>
<td>5.93%</td>
<td>6.02%</td>
<td>0.09%</td>
</tr>
<tr>
<td></td>
<td>k = 50</td>
<td>5.94%</td>
<td>6.02%</td>
<td>0.08%</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>5.94%</td>
<td>6.02%</td>
<td>0.08%</td>
</tr>
<tr>
<td>3</td>
<td>k = 10</td>
<td>7.78%</td>
<td>7.94%</td>
<td>0.16%</td>
</tr>
<tr>
<td></td>
<td>k = 30</td>
<td>7.83%</td>
<td>7.96%</td>
<td>0.13%</td>
</tr>
<tr>
<td></td>
<td>k = 50</td>
<td>7.83%</td>
<td>7.96%</td>
<td>0.13%</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>7.84%</td>
<td>7.96%</td>
<td>0.12%</td>
</tr>
<tr>
<td>5</td>
<td>k = 10</td>
<td>11.35%</td>
<td>11.62%</td>
<td>0.27%</td>
</tr>
<tr>
<td></td>
<td>k = 30</td>
<td>11.48%</td>
<td>11.70%</td>
<td>0.22%</td>
</tr>
<tr>
<td></td>
<td>k = 50</td>
<td>11.50%</td>
<td>11.71%</td>
<td>0.21%</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>11.52%</td>
<td>11.72%</td>
<td>0.20%</td>
</tr>
<tr>
<td>10</td>
<td>k = 10</td>
<td>19.33%</td>
<td>19.87%</td>
<td>0.54%</td>
</tr>
<tr>
<td></td>
<td>k = 30</td>
<td>19.86%</td>
<td>20.30%</td>
<td>0.43%</td>
</tr>
<tr>
<td></td>
<td>k = 50</td>
<td>19.93%</td>
<td>20.35%</td>
<td>0.42%</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>20.02%</td>
<td>20.42%</td>
<td>0.40%</td>
</tr>
</tbody>
</table>
Table 2
Matching the risk-free return and the equity premium using the asset pricing model with subjective expectations

Reported are the risk-free return and the equity premium under structural uncertainty and Bayesian learning by varying the maximum level of consumption growth volatility $\sigma = 1/\sqrt{\vartheta}$ and the risk aversion α along possible grid points. Fixing α, $\sigma = 1/\sqrt{\vartheta}$ is varied to match the equity premium of 6% in Panel A and the risk-free return of 1% in Panel B. The computation relies on the following parameters:

$$\mu = 2\%, \quad \sqrt{V} = 2\%, \quad k = 50, \quad \beta = 0.98, \quad \sigma = 1/\sqrt{\vartheta} = 0.1\%.$$

The equity premium and the risk-free return are both expressed as annual percentages. The maximum allowable consumption growth volatility σ is not expressed in percentage terms (i.e., $\sigma = 11.935$ stands for 1193.5%).

<table>
<thead>
<tr>
<th>α</th>
<th>σ</th>
<th>Risk-free return</th>
<th>α</th>
<th>σ</th>
<th>Equity premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.935</td>
<td>0.02%</td>
<td>2</td>
<td>11.931</td>
<td>5.02%</td>
</tr>
<tr>
<td>3</td>
<td>7.652</td>
<td>1.96%</td>
<td>3</td>
<td>7.654</td>
<td>6.96%</td>
</tr>
<tr>
<td>4</td>
<td>5.569</td>
<td>3.85%</td>
<td>4</td>
<td>5.574</td>
<td>8.85%</td>
</tr>
<tr>
<td>5</td>
<td>4.347</td>
<td>5.71%</td>
<td>5</td>
<td>4.353</td>
<td>10.71%</td>
</tr>
<tr>
<td>6</td>
<td>3.546</td>
<td>7.52%</td>
<td>6</td>
<td>3.553</td>
<td>12.52%</td>
</tr>
<tr>
<td>7</td>
<td>2.983</td>
<td>9.29%</td>
<td>7</td>
<td>2.990</td>
<td>14.29%</td>
</tr>
<tr>
<td>8</td>
<td>2.566</td>
<td>11.02%</td>
<td>8</td>
<td>2.574</td>
<td>16.02%</td>
</tr>
<tr>
<td>9</td>
<td>2.246</td>
<td>12.71%</td>
<td>9</td>
<td>2.253</td>
<td>17.71%</td>
</tr>
<tr>
<td>10</td>
<td>1.993</td>
<td>14.35%</td>
<td>10</td>
<td>2.000</td>
<td>19.35%</td>
</tr>
<tr>
<td>15</td>
<td>1.251</td>
<td>21.95%</td>
<td>15</td>
<td>1.258</td>
<td>26.95%</td>
</tr>
<tr>
<td>20</td>
<td>0.894</td>
<td>28.49%</td>
<td>20</td>
<td>0.900</td>
<td>33.49%</td>
</tr>
</tbody>
</table>
Table 3: Structural uncertainty and probabilities of rare disasters

The table presents the probabilities of rare disasters corresponding to the Normal distribution, the dampened t-distribution by varying the maximum level of consumption growth volatility σ, and the Student-t distribution. Rare disaster x_{rare} represents the deviation from mean consumption growth in multiples of volatility:

$$x_{\text{rare}} = \mu - h \sqrt{V},$$

where $h \in \{3, 4, 5, 6\}$, $\mu = 2\%$, and $\sqrt{V} = 2\%$. Under the assumption that $k = 50$ and $\sigma = 1/\sqrt{\theta} = 0.1\%$, we compute and report the rare disaster probabilities

$$\text{Prob}(X_{t+1} \leq x_{\text{rare}}) = \frac{1}{c_{[\nu, \xi, \xi]}} \int_{-\infty}^{\xi} N\left(-h \sqrt{w/\nu}\right) w^{d-1} e^{-\frac{w^2}{2}} dw,$$

where $\nu = k - 1$ is the degrees of freedom, $\xi = \frac{(k-1)\nu}{\sigma^2}$, $\xi = \frac{(k-1)\nu}{\sigma^2}$, and $N(d) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-u^2/2} du$ is the standard Normal cumulative distribution function. The Normal distribution probabilities correspond to $k = \infty$, and the Student-t distribution probabilities correspond to $\sigma = 1/\sqrt{\theta} = 0$ and $\sigma = 1/\sqrt{\theta} = \infty$.

<table>
<thead>
<tr>
<th>h</th>
<th>Normal distribution $\sigma = 4%$</th>
<th>Dampened t-distribution $\sigma = 5%$</th>
<th>Student-t distribution $\sigma = 6%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.349898E-03</td>
<td>2.100851E-03</td>
<td>2.100852E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.100852E-03</td>
<td>2.100852E-03</td>
</tr>
<tr>
<td>4</td>
<td>3.167124E-05</td>
<td>1.045948E-04</td>
<td>1.045951E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.045951E-04</td>
<td>1.045951E-04</td>
</tr>
<tr>
<td>5</td>
<td>2.866516E-07</td>
<td>3.716510E-06</td>
<td>3.716606E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.716606E-06</td>
<td>3.716606E-06</td>
</tr>
<tr>
<td>6</td>
<td>9.865877E-10</td>
<td>1.094241E-07</td>
<td>1.094470E-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.094470E-07</td>
<td>1.094470E-07</td>
</tr>
</tbody>
</table>
Fig. 1. Simulating the posterior distribution of θ_{t+1} and σ_{t+1} given X_t. Plotted is the posterior distribution of θ_{t+1} given X_t under no truncation, which is Gamma(A, B) given the availability of a large past history. In the computations, the volatility of consumption growth is $\sqrt{V} = 2\%$ and the effective sample size is $k = 50$. Therefore,

$$A = (k - 1)/2 = 24.5, \quad B = (k - 1)V/2 = 0.0098.$$

Panel A presents the distribution of the precision of consumption growth, θ_{t+1}, and Panel B presents the distribution of the volatility of consumption growth, $\sigma_{t+1} = 1/\sqrt{\theta_{t+1}}$. Both plots are based on a simulation of ten million draws.
Fig. 2. Plot of \(\ln\left(\frac{g(X_{t+1}; k-1)}{g^{DT}(X_{t+1}; k-1, \overline{\varphi}(k-1)V, \overline{\varphi}(k-1)V)}\right)\) versus \(X_{t+1}\). Plotted is the logarithm ratio of densities defined below (under the availability of a large past history):

\[
Y_{t+1} \equiv \ln \left(\frac{g(X_{t+1}; k-1)}{g^{DT}(X_{t+1}; k-1, \overline{\varphi}(k-1)V, \overline{\varphi}(k-1)V)}\right), \quad X_{t+1} = \mu + \sqrt{V}Y_{t+1},
\]

as a function of consumption growth \(X_{t+1}\). Given that \(Y_{t+1}\) is Student-\(t\) distributed based on Eqs. (12)-(13), the density of \(X_{t+1}\) is seen to be

\[
g(X_{t+1}; k-1) = \frac{1}{\sqrt{V}} \frac{\Gamma[k/2]}{\sqrt{\pi (k-1)}} \frac{(1 + \frac{(X_{t+1} - \mu)/\sqrt{V})^2}{k-1})^{-k/2}}{\Gamma[(k-1)/2]}.
\]

The form of the density \(g^{DT}(X_{t+1}; k-1, \overline{\varphi}(k-1)V, \overline{\varphi}(k-1)V)\) is similarly obtained, as \(Y_{t+1}\) follows the dampened \(t\) distribution with density presented in Eq. (23). Here \(\nu = 2A = k-1, \xi = \overline{\varphi}(k-1)V,\) and \(\xi = \overline{\varphi}(k-1)V\). For the purposes of this graph,

\[
\mu = 2\%, \quad \sqrt{V} = 2\%, \quad k = 50, \quad \sigma = 1/\sqrt{\overline{\varphi}} = 0.01\%, \quad \overline{\varphi} = 1/\sqrt{\overline{\varphi}} = 500\%.
\]
Fig. 3. Equity premium and risk-free return versus maximum consumption growth volatility σ. The dashed-curve depicts the risk-free return, and the solid-curve depicts the equity risk premium on the y-axis, while changing σ on the x-axis. The value, say, 11.9 on the x-axis corresponds to 1,190%. For these plots we set

$$\mu = 2\%, \quad V = 2\%, \quad k = 50, \quad \beta = 0.98, \quad \sigma = 1/\sqrt{\vartheta} = 0.01\%.$$

Each plot corresponds to fixed risk aversion $\alpha \in \{2, 3, 5, 10\}$. We compute the risk-free return as

$$\ln(R_{t+1}^f) = -\ln(\beta) - \ln(\Psi_X[-\alpha]),$$

and the equity premium as

$$\ln(E_t(R_{t+1}^e)) - \ln(R_{t+1}^f) = \ln(\Psi_X[1]) - \ln(\Psi_X[1-\alpha]) + \ln(\Psi_X[-\alpha]),$$

where $\Psi_X[\lambda]$ is presented in Eq. (30) of Theorem 3.