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Abstract— We develop a novel two-timescale simulation-based gra-
dient algorithm for weighted cost Markov Decision Process (MDP)
problems, illustrate the effectiveness of this algorithm by carrying
out numerical experiments on a parking example, and compare the
algorithm with two other algorithms in the literature.

I. INTRODUCTION

In this paper, we develop a two-timescale simulation-based
gradient algorithm for infinite horizon weighted cost Markov
Decision Process (MDP) problems with weighted expected total
cost criterion, where the expected total cost is defined over a
known probability distribution on the initial state. This problem,
a generalization of the stochastic short problem, is first discussed
by Marbach [1]. In our setting, in order to deal with “curse of
dimensionality” and “curse of modeling” difficulties associated
with MDPs for large and complicated systems, we assume that
a policy can be parameterized, in such way the weighted cost
problem can be transformed to a problem of finding the optimal
parameters minimizing only the weighted expected cost, and thus
can be solved by simulation-based optimization algorithms such
as gradient-based stochastic approximation.

Our two-timescale simulation-based gradient algorithm is de-
veloped by combining two simulation-based gradient algorithms:
one that updates parameters at regenerative points (as in average
cost MDPs) and the other that updates parameters at each time
step [1]. These algorithms require the state be fully observable
and the transition probabilities known explicitly (as opposed to
having only sample paths available). In the regenerative-update
algorithm, the length of each regenerative cycle is unknown, which
can lead to infrequent update of parameters. On the other hand,
if parameters are updated at each time epoch, parameters may
change too frequently, which may not be allowed in a real system.
The proposed two-timescale algorithm, by updating parameters
at a sequence of specially designed time epochs, can avoid the
situations of infrequent updates with unknown regenerative points
and too much disturbance to system due to too frequent updates.

Several authors have studied two (or multiple)-timescale
simulation-based algorithms. In [2], Borkar claimed that one im-
portant instance of two-timescale is the infinitesimal perturbation
analysis based stochastic approximation, which requires averaging
over regeneration periods. Bhatnagar et al. [3] [4] [5] [6] [7]
proposed several Kiefer-Wolfowitz-type two-timescale stochastic
approximation algorithms for average cost problems. For Markov
Decision Processes, Konda et al. [8] [9] and Bhatnagar et al.
[10] also proposed actor-critic algorithms and cast them as two-
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timescale algorithms for convergence proofs. Since our setting re-
quires the state fully observable and transition probabilities known
explicitly, the applicability of our two timescale algorithm is more
restrictive than most of these other two timescale algorithms.

The effectiveness of the two-timescale simulation-based gradi-
ent algorithm for weighted cost MDP problems is demonstrated
by numerical experiments on a parking case study.

II. MARKOV DECISION PROCESSES

A Markov Decision Process is a framework containing states,
actions, costs, probabilities, and the decision horizon for the
problem of optimizing a stochastic discrete-time dynamic system.
The dynamic system equation is xt+1 = ft(xt, ut, wt), t =
0, 1, . . . , T−1, where t indexes a time epoch; xt is the state of the
system; ut is the action to be chosen at time t; wt is a random
disturbance which is characterized by a conditional probability
distribution P (· | xt, ut); and T is the decision horizon. We
denote the set of possible system states by S and the set of
allowable actions in state i ∈ S by U(i). We assume S, U(i),
and P (· | xt, ut) do not vary with t. We further assume that
the sets S and U(i) are finite sets, where S consists of n states
denoted by 0, 1, . . . , n − 1.

If, at some time t, the system is in state xt = i and action
ut = u is applied, we incur a stage cost g(xt, ut) = g(i, u),
assumed bounded, and the system moves to state xt+1 = j with
probability pij(u) = P (xt+1 = j | xt = i, ut = u), which may
be given a priori or calculated from the system equation and the
known probability distribution of the random disturbance.

A. Stochastic Shortest Path Problem

In the stochastic shortest path problem, it is assumed that there
is a special cost-free termination state n in the system and the
system remains there at no further cost once it reaches that state.
The objective is to minimize over all policies π = {µ0, µ1, . . .}
with µt : S → U, µt(i) ∈ U(i) for i and t, the total expected
cost, Jπ(i) = E

{∑T−1

t=0
g(xt, µt(xt)) | x0 = i

}
, where T =

min{t > 0 | xt = i∗}. A stationary policy is an admissible policy
of the form π = {µ, µ, . . .}; we denote it by µ∞.

B. Weighted Cost Problems

The objective is to minimize the mean cost over initial states,
knowing that the initial state x0 is equal to a specific state i ∈ S
with probability ξi. If we denote the cost to go from an initial
state x0 with policy π as Jπ(x0), the mean cost to go over initial
states with policy π is E[Jπ(x0)] =

∑
i∈S

ξiJπ(i). In the sense
that ξi acts like a kind of weight, we call the mean cost to go over
initial states a weighted cost to go and denote it by

χπ =
∑
i∈S

ξiJπ(i), (1)

where ξi ≥ 0,
∑

i∈S
ξi = 1. The corresponding problem of

minimizing χπ is called the weighted cost problem.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC10.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 8022



Here, we assume that the weighted cost problem has an infinite
horizon. We also assume that there exists a termination cost-free
state i∗ in the system and the system remains there at no further
cost once it reaches that state, as in the stochastic shortest path
problem. The objective is to minimize (1) over all policies π =
{µ0, µ1, . . .}, where Jπ(i) = E

{∑T−1

t=0
g(xt, µt(xt)) | x0 = i

}
,

T = min{t > 0 | xt = i∗}.
If π is a stationary policy with the form π = {µ, µ, . . .}, the

corresponding weighted cost and expected total cost from state i
are denoted as χµ and Jµ(i), respectively.

If a randomized decision rule µ is considered, which
specifies a probability distribution qµ(i)(u) on the set of
actions, the stage cost and transition probabilities become
g(i, µ(i)) =

∑
u∈U(i)

g(i, u)qµ(i)(u), and pij(µ(i)) =∑
u∈U(i)

pij(u)qµ(i)(u), respectively.
In order to solve this problem, we need to derive its opti-

mality equations. Note that the policy minimizing Jµ(i) in the
corresponding stochastic shortest path problem also minimizes
χµ in the weighted cost problem, because χ∗ =

∑
ξiJ

∗(i) ≤∑
ξiJπ(i) = χπ , as J∗(i) ≤ Jπ(i). Hence, policy iteration,

value iteration, and all simulation-based dynamic programming
algorithms for the stochastic shortest path problem can be used
for the weighted cost problem. If the control space is very large,
the search space would accordingly be large, which requires very
long computation time. One way to deal with this difficulty is to
parameterize the policy.

If we parameterize the policy by a parameter vector θ ∈ Rp,
the parameterized stationary policy is π(θ) = {µ, µ, . . .}, with
µ : S × Rp → U , and the corresponding decision rule is µ(i, θ),
with its dependence on θ assumed known.

Under a randomized policy µ(i, θ) characterized by qµ(i,θ)(u),
the transition probabilities are denoted by pij(θ), the one-stage
cost at state i is denoted by gi(θ) and

pij(θ) =
∑

u∈U(i)
pij(u)qµ(i,θ)(u),

gi(θ) =
∑

u∈U(i)
g(i, u)qµ(i,θ)(u).

(2)

Hence, under policy µ(i, θ), the Markov Decision Process
we defined earlier degenerates to a Markov process defined by
transition probabilities pij(θ) and one-stage costs gi(θ), which
we call a Markov Cost Process (MCP) depending on θ. The
termination state is i∗, with pi∗i∗(θ) = 1 and gi∗(θ) = 0.

Furthermore, the original problem of finding an optimal policy
for an MDP becomes a problem of finding the optimal θ mini-
mizing χ(θ), where

χ(θ) =
∑
i∈S

ξiJi(θ),

Ji(θ) := Jπ(θ)(i) = E

{
T−1∑
t=0

git(θ) | i0 = i

}
, (3)

and T = min{t > 0 | it = i∗}.
In order for gradient estimation techniques to be applicable, the

following assumptions on pij(θ) and gi(θ) are necessary.
Assumption 1 (MCP Parameterization): For all i, j ∈ S, the

transition probability pij(θ), and the stage cost gi(θ) are bounded,
twice differentiable, and have bounded first and second deriva-
tives. Furthermore, for all states i, j ∈ S, we have ∇pij(θ) =
pij(θ)fij(θ), where the function fij(θ) is bounded and differen-
tiable, with bounded first derivative.

Let P (θ) be the transition matrix with entries pij(θ), let P =
{P (θ) | θ ∈ RK} be the set of all possible transition matrices, and
let P be its closure. It can be proved that every element P ∈ P
is a stochastic matrix (see Lemma 1 in [1]).

Assumption 2 (MCP Termination): There exists a state i∗ ∈ S,
such that, for every parameter vector θ ∈ RK , we have gi∗(θ) = 0
and pi∗i∗(θ) = 1, and for every state i ∈ S and every transition
matrix P (·) ∈ P , we have pN

ii∗ > 0, where N is the number of
states in the state space S.
Note that pN

ii∗ > 0 only means that state i∗ is reachable from
every other state.

III. TWO-TIMESCALE SIMULATION-BASED

GRADIENT ALGORITHM

In this section, we develop a two-timescale simulation-based
gradient algorithm for weighted cost problems using gradient
estimation techniques.

We begin with defining a new Markov cost process with
transition probabilities and one-stage costs as in [1]:

pξ,ij(θ) =

{
pij(θ) if i �= i∗;
ξj if i = i∗,

gξ,i(θ) = gi(θ).

(4)

Note that the new Markov cost process is a renewal process and
χ(θ) is equal to the expected cumulative cost over a regenerative
cycle. By using renewal theory, the following expressions for χ(θ)
and its gradient can be obtained [1]:

χ(θ) = Eξ,θ[T ]
∑
i∈S

πξ,i(θ)gξ,i(θ), (5)

∇χ(θ) = Eξ,θ[T ]
∑
i∈S

(∇πξ,i(θ)gξ,i(θ) + πξ,i(θ)∇gξ,i(θ)), (6)

where Eξ,θ[T ] is the mean recurrence time and πξ,i(θ) is the
steady state probability distribution of being in state i ∈ S.
However, for a problem with a large state space, it is generally
infeasible to compute this gradient exactly, since this requires to
compute, for every i ∈ S, the steady state probability πξ,i(θ) and
its gradient ∇πξ,i(θ). One method to deal with this difficulty is
to develop a simulation-based estimator of ∇χ(θ) by techniques
such as perturbation analysis.

Before we present a particular gradient estimator for ∇χ(θ),
let’s discuss why we consider two-timescale simulation-based
algorithms and how we develop such algorithms.

Let (i1, i2, . . .) be a sample path of the renewal pro-
cess, tm be the mth visit to the recurrent state i∗, and
itm , itm+1, . . . , itm+1−1 be the mth regenerative cycle. Suppose
F̂ (θ) is an unbiased estimator of ∇χ(θ), a simulation-based
gradient algorithm based on this estimate is:

θm+1 = θm + αmF̂m(θm), (7)

where F̂ (θm) is a sample estimate of ∇χ(θm) and the step sizes
αm are deterministic, nonnegative, and satisfying

∑∞
m=1

αm =
∞ and

∑∞
m=1

α2
m < ∞. This algorithm, which we call the

regenerative-update simulation-based algorithm, updates at visits
to the regenerative state i∗.

And if F̂m(θm) can be reformulated as:

F̂m(θ) =

tm+1−1∑
k=tm

R̂k(θ),
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another simulation-based gradient algorithm is given by:

θk+1 = θk + αkR̂k(θk), (8)

where the step sizes αk satisfy the same conditions as before. We
call such an algorithm the every-update simulation-based gradient
algorithm.

Note that the length of each regenerative cycle is unknown, and
maybe very long, which can lead to infrequent updates of θ for
the regenerative-update simulation-based algorithm. On the other
hand, if θ is updated at each time epoch, as in the every-update
simulation-based gradient algorithm, θ may change too frequently
which may not be allowed in a real system. Hence, we propose
a general two-timescale simulation-based gradient algorithm as
follows:

θl+1 = θl +

nl+1−1∑
k=nl

αkR̂k(θl), (9)

where

nl+1 = min{j > nl|
j−1∑

k=nl

αk ≥ βl}, (10)

and we assume the following on the two-timescale step sizes αk

and βl:
Assumption 3: The step sizes αk and βk are deterministic,

nonnegative and satisfy
∑∞

k=1
αk = ∞,

∑∞
k=1

α2
k < ∞,∑∞

k=1
βk = ∞,

∑∞
k=1

β2
k < ∞, αk/αk+1 → 1, βk/βk+1 →

1, αk = o(βk).
Next, we discuss a particular gradient estimator for χ(θ).

A. A Modified Gradient Estimator and its Decomposition

In this part, we review Marbach’s results [1] on the gradient of
χ(θ) and the gradient estimator, and present a modified gradient
estimator and a decomposition of this modified gradient estimator.

By using perturbation analysis, Marbach [1] obtained the fol-
lowing expressions for ∇χ(θ), the gradient of χ(θ):

∇χ(θ) = Eξ,θ[T ]
∑
i∈S

πξ,i(θ)(∇gi(θ) +
∑
j∈S

∇pij(θ)Jj(θ)),

(11)
based on (6). Note that ∇χ(θ) in Eq. (11) can be rewritten as [1]:

∇χ(θ) = Eξ,θ[T ]
∑

i∈S
πξ,i(θ)·(

∇gi(θ) +
∑

j∈Si(θ)
pij(θ)

(
∇pij(θ)

pij(θ)
Jj(θ)

))
,

(12)
where Si(θ) = {j ∈ S | ∇pij(θ) �= 0}. Let tm be the time epoch
that state i∗ is visited for the mth time and the sequence {itm ,
itm+1, . . . , itm+1−1} be the mth regenerative cycle.

Based on Eq. (12), Marbach put forward the following estimate
for ∇χ(θ):

Fm(θ) =

tm+1−1∑
n=tm

(
J̃in(θ)

∇pin−1in(θ)

pin−1in(θ)
+ ∇gin(θ)

)
, (13)

where

J̃in(θ) =

{ ∑tm+1−1

k=n
gik(θ) if tm < n ≤ tm+1 − 1,

0 if n = tm.
(14)

Alternatively, we propose the following:

F̄m(θ) =

tm+1−1∑
n=tm

(
J̃in+1(θ)

∇pinin+1(θ)

pinin+1(θ)
+ ∇gin(θ)

)
, (15)

where

J̃in(θ) =

{ ∑tm+1−1

k=n
gik(θ), if tm < n ≤ tm+1 − 1,∑tm+1−1

k=tm
gik(θ), if n = tm+1.

(16)
Comparing the two estimators with Eq. (12), we argue that

the corrected estimator corresponds better to Eq. (12), since i
and j in Eq. (12) are consistent with in and in+1 in Eq. (15),
respectively, and J̃itm+1

(θ) in Eq. (16) matches the definition of
Ji∗(θ), which is the cumulative cost over a regenerative cycle.
Since the cumulative cost over the next regenerative cycle is not
available at tm+1, in our estimator the current regenerative cycle
from tm to tm+1 −1 is used for J̃itm+1

(θ) estimating, instead of
the next regenerative cycle from tm+1 to tm+2 − 1 suggested by
Eq. (12). Using the corrected estimator, we can otherwise follow
proof of Proposition 4 in [1] to prove that our estimator (15) is
an unbiased estimate of the gradient.

Note that we can decompose (15) as

F̄m(θ) =
∑tm+1−1

n=tm

(
J̃in+1(θ)

∇pinin+1 (θ)

pinin+1 (θ)
+ ∇gin(θ)

)
=

∑tm+1−2

n=tm

∇pinin+1 (θ)

pinin+1 (θ)

∑tm+1−1

k=n+1
gik(θ)

+
∇pitm+1−1itm+1

(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1

n=tm
∇gin(θ)

=
∑tm+1−1

h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

∑tm+1−1

k=h
gik (θ)

+
∇pitm+1−1itm+1

(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1

n=tm
∇gin(θ)

=
∑tm+1−1

k=tm+1
gik (θ)

∑k

h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

+
∇pitm+1−1itm+1

(θ)

pitm+1−1itm+1
(θ)

J̃itm+1
(θ) +

∑tm+1−1

n=tm
∇gin(θ)

=
∑tm+1−1

k=tm+1

(
∇gik (θ) + gik(θ)

∑k

h=tm+1

∇pih−1ih
(θ)

pih−1ih
(θ)

)
+

∇pitm+1−1itm+1
(θ)

pitm+1−1itm+1
(θ)

∑tm+1−1

h=tm
gih(θ)

=
∑tm+1−1

k=tm+1

(
∇gik(θ) + gik (θ)zk

+
∇pikik+1 (θ)

pikik+1 (θ)
(Lk + gik(θ))I{k=tm+1−1}

)
(17)

where I{·} is the indicator function,

zk+1 =

{
0, if ik+1 = i∗;

zk +
∇pikik+1 (θ)

pikik+1 (θ)
otherwise,

(18)

and

Lk+1 =

{
0, if ik+1 = i∗;
Lk + gik (θ), otherwise.

(19)

Note that at k = tm, both ∇gik(θ) and gik(θ) are zero. Hence,
R̂k(θ) in Equations (8) (9) can be substituted by

R(xk, θ) =

∇gik(θ) + gik (θ)zk +
∇pikik+1 (θ)

pikik+1 (θ)
(Lk + gik(θ))I{ik+1=i∗},

(20)
where xk = (ik, zk, Lk).

B. Two-Timescale Simulation-Based Gradient Algorithm

Now we present our special two-timescale simulation-based
gradient algorithm, which updates at some given time epoch nl,
defined by two-timescale step sizes αk and βl. In this algorithm,
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the parameter θl is updated as follows:

θl+1 = θl +
∑nl+1−1

k=nl
αk

(
∇gik(θl)

+gik(θl)zk +
∇pikik+1 (θl)

pikik+1 (θl)
(Lk + gik (θl))I{ik+1=i∗}

)
,

(21)
where nl satisfies (10), and zk and Lk are given by (18) and (19),
respectively. Note that zk and Lk are updated at every time k,
which is a faster timescale; θl is updated at time nl, which is a
slower timescale.

To prove its convergence, we make additional assumptions as
in [1].

Assumption 4: The step sizes αk are non-increasing. Further-
more, there exist a positive integer p and a positive scalar A such
that

∑n+t

k=n
(αn −αk) ≤ Atpα2

n, for all positive integers n and t.
Assumption 5 (MCP Strong Termination): There exist a state

i∗ ∈ S and a positive integer N0, such that, for every parameter
vector θ ∈ RK , we have gi∗(θ) = 0, and Pi∗i∗(θ) = 1, and,
for every state i ∈ S and every collection {P1, . . . , PN0} of N0

matrices in the set P , we have Qii∗ > 0, where the matrix Q is
given by Q = P1 · · ·PN0 .

We have the following convergence result for the two-timescale
simulation-based gradient algorithm.

Proporsition 1: Let Assumption 1, 3, 4, and 5 hold, and let
θl be the sequence of parameter vector generated by the two-
timescale simulation-based gradient algorithm (21). Then, χ(θl)
converges and

lim
l→∞

‖ ∇χ(θl) ‖= 0

with probability 1.
Proof: See [11].

IV. PARKING PROBLEM

This case study involves a well-known academic example that
has been used in [12] to demonstrate the approximate policy
iteration method. Here we adopt this example to illustrate the
simulation-based gradient algorithms presented in the last two
sections.

A driver is looking for a low-priced parking space on the way
to his destination. The parking area contains N spaces. The driver
starts at space N and crosses the parking spaces from space s to
space s−1, s = N , N−1, . . ., 1. The destination is parking space
0. Each parking space is empty with probability p independently
of whether other parking spaces are empty or not. The driver can
spot whether a parking space is empty only when he reaches it,
and then, if it is empty, he makes a decision whether or not to
park in that space. If he parks in space s, s = N , N − 1, . . ., 1,
he incurs a cost c(s) > 0. If he reaches the destination without
having parked, he must park in the destination’s garage, which is
expensive, and costs C > 0. The objective is to find the optimal
parking policy.

We formulate this problem as a weighted cost MDP problem
with termination state i∗, which is similar to the stochastic shortest
path formulation in [12]. In addition to the termination state, state
0 corresponds to reaching the expensive garage, state (s, F ) (s =
1, . . . , N ) corresponds to space s being empty (“free”), and state
(s, F̄ ) (s = 1, . . . , N ) corresponds to space s being not empty
(“not free”). Two possible actions, up and un, represent the actions
“park” and “do not park”, respectively.

An MDP formulation for this weighted cost MDP problem
follows.
States: i ∈ S = {0, i∗, (s, F ), (s, F̄ )}, for all s.

Actions:

u(i) = U(i) =

⎧⎪⎨
⎪⎩

{un, up}, i = (s, F ), for all s.
{un}, i = (s, F̄ ), for all s.
{up}, i = 0,
∅, i = i∗.

Transition probabilities:

p(s,F )i∗(up) = 1, for all s,

p(1,j)0(un) = 1, j ∈ {F, F̄},
p(s,j)(s−1,F )(un) = p, s = 2, . . . , N, j ∈ {F, F̄},
p(s,j)(s−1,F̄ )(un) = 1 − p, s = 2, . . . , N, j ∈ {F, F̄},

pii∗(up) = 1, i ∈ {0, i∗}, u ∈ U(i).

One-stage cost:

g((s, F ), up) = c(s), for all s,

g((s, j), un) = 0, for all s, j ∈ {F, F̄},
g(0, up) = C,

g(i∗, u) = 0, u = ∅.
Objective function:

The objective is to minimize over all policies π = {µ0, µ1, . . .}
with µt : S → U, µt(i) ∈ U(i) for i and t, the weighted total
cost from state i,

χπ =
∑
i∈S

ξiJπ(i), (22)

where

Jπ(i) = E

{
T−1∑
t=0

g(xt, µt(xt)) | x0 = i

}
, . (23)

An optimal policy of this weighted cost MDP problem has the
form:

µ∗(s) =

{
up, if space s is free and c(s) ≤ J∗(s − 1),
un, otherwise.

Furthermore, if c(s) is monotonically increasing in s, there is
an integer s∗ such that it is optimal to park at space s if and only if
s is free and s ≤ s∗, since J∗(s) is monotonically nonincreasing
in s [12]. Thus, the optimal policy is a threshold policy, i.e., to
park at the first available space after a threshold is reached.

Here we use randomized threshold policy where its parameter-
ized version is as follows(see [11] for details):

qµ((s,F ),θ)(un) =
1

1 + exp(θ − s)

qµ((s,F ),θ)(up) = 1 − qµ((s,F ),θ)(un),

where θ is the threshold and the problem is converted to finding
the optimal θ.

Using Eq. (2), we can also construct the transition probabilities
and the corresponding one-stage costs under the randomized
policy. We omit the details due to space consideration. With
parameterized policy, the objective function turns to be: χ(θ) =
ξ1J(N,F )(θ)+ ξ2J(N,F̄ )(θ), where ξ1 = p, ξ2 = 1−p, and Ji(θ)
is defined as in Eq. (3).

Now, given a fixed θ̄, the state sequence i0(θ̄),. . .,iT (θ̄) gener-
ated according to the above transition probabilities and one-stage
costs is a Markov cost process. For the simulation-based gradient
algorithms, we also define a new Markov cost process with new
transition probabilities and new one-stage costs as in Eq. (4). The
new Markov cost process is a renewal process. So we need only
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one single sample path when we apply simulation-based gradient
algorithms, where the initial state is i∗.

V. NUMERICAL EXPERIMENTS

We now compare the three algorithms on the parking problem:
the two-timescale algorithm [given by Eq. (21)], the (corrected)
regenerative-update simulation-based gradient algorithm [Eq. (7)
with F̄m(θm) given by Eq. (15) in place of F̂m(θm)], and the
(corrected) every-update simulation-based gradient algorithm [Eq.
(8) with Rk(xk, θk) given by (20) in place of R̂k(θk)]. Note
that the convergence of the latter two algorithms can be proved
following the same arguments as in the proofs of Proposition
5 and Proposition 14 in [1]. In our numerical experiments, we
consider the same case as in [12] where p=0.05, c(s)=s, C=100,
and N=200. The optimal policy for this case is to park in the first
available space after the parking space 35 is reached. Fig. 1 shows
the expected cost χ(θ) as a function of threshold θ. The optimal
cost χ(θ∗) = 35.7639 when θ∗ = 35.

All three algorithms were implemented in C, and experiments
were conducted on a Sun Microsystems ULTRA10 running Solaris
2.6 operating system. For all the experiments, we selected initial
parameter θ0 = 100, for which χ(θ0) = 81.7045. For each result,
we simulated four sample paths using independent seeds and show
the mean and standard deviation of θ. When we implemented
these three algorithms, we used step sizes αj = a/jc (where j is
the updates index) and βl = b/ld (required for the two-timescale
algorithm), where a, b, c, and d are tunable positive parameters.
We also set n0 = 1 for the two-timescale algorithm.

regenerative-update algorithm: Since we dealt with a renewal
process, we only needed to simulation one single sample path start-
ing from state i∗. At every time epoch n, we calculated one-stage
cost differential ∇gin(θm), transition probability pinin+1(θm),
transition probability differential ∇pinin+1(θm), and cumulative
costs J̃in+1(θm), where time epoch n is in the mth regenerative
cycle. At the end of the mth regenerative cycle, we computed the
gradient estimate using Eq. (15) and updated θm.

First we consider the regenerative-update algorithm implemen-
tation with fixed a and c. Figures 2(a) and 2(b) show how θm

and χ̂(θm) converge to a near-optimal value, with a = 2.0 and
c = 0.662. Note that we plot the progressions as a function of
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Fig. 2. Simulation-Based Regenerative-Update Gradient Algorithm

time epochs rather than as a function of iterative (regenerative)
updates to facilitate comparison with the other algorithms. At
time epoch n, θn,1 to θn,4 are four samples, their mean is
θ̄n = (

∑4

i=1
θn,i)/4, and their sample standard deviation (std)

is calculated by
√∑4

i=1
(θn,i − θ̄n)2/3. The trajectories shown

in Figure 2(a) (or b) are the mean, the mean plus the standard
deviation, the mean minus standard deviation, and the optimal
value of θn (or χ(θn)). Note that θ converges to a value with
near-optimal cost within 1, 000, 000 time epochs. After that, θn

improves more slowly, with some small oscillations. The final
value θ5,000,000 = 37.34±1.82 and χ(θ5,000,000) = 35.89±0.16.

Next, we investigated the sensitivity of this algorithm to a and
c. From Fig. 2(c), we can observe that too small a value of a
leads to slow convergence, but larger values cause overshoots. In
contrast, Fig. 2(d) indicates the effect is opposite for c, i.e., too
large a value leads to slow convergence, whereas small values can
result in fluctuations. This type of sensitivity is typical of stochastic
approximation algorithms.

Note that implementation of the regenerative-update algorithm
requires storage of the accumulated costs J̃in+1(θ) for all time
epochs in a regenerative cycle before estimating the gradient
estimate. If the expected length of a regenerative cycle is large, the
storage requirements of this algorithm might make it impractical.

every-update algorithm: Implementation of the every-update
algorithm requires calculation at each time epoch k of the one-
stage cost gik(θk), one-stage cost differential ∇gik(θk), transi-
tion probability pikik+1(θk), and transition probability differential
∇pikik+1(θk), and then updating θk, Lk and zk using (8), (19),
and (18). At the end of each regenerative cycle, Lk and zk must
be reset.

With a = 20.0 and c = 0.662, Fig. 3(a) and 3(b) show how
θk and χ̂(θk) converge to the optimal value. Again, θk is near-
optimal within about 1, 000, 000 time epochs, converging more
slowly to the optimal after that, with θ5,000,000 = 37.12±0.70 and
χ(θ5,000,000) = 35.82±0.08. Sensitivity analysis of this algorithm
w.r.t. a and c, as seen in Fig. 3(c) and 3(d), is basically the same
as for the regenerative-update algorithm.

two-timescale algorithm: Implementation of the two-timescale
algorithm is similar to the implementation of the every-update
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Fig. 3. Simulation-Based Every-Update Gradient Algorithm
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Fig. 4. Simulation-Based Two-Timescale Gradient Algorithm

algorithm, the main difference being that θ is updated at a slower
scale, instead of at every time epoch. The number of time epochs
before the next update of θ is characterized by nl (see Eq. (10))
where l is the number of updates so far. At each time epoch k
of the θl update, the quantities gik(θl), ∇gik(θl), pikik+1(θl),
∇pikik+1(θl) must be calculated, and Lk and zk updated. At the
end of each regenerative cycle, Lk and zk are reset.

From Fig. 4(a) and 4(b), we can see how θl and χ̂(θl) converge
to a near-optimal value, with a = 20, b = 22, c = 0.602, and
d = 0.547. Again, θl proceeds rapidly to near optimality within
1, 000, 000 time epochs, with final value θ5,000,000 = 36.37±0.75
and χ(θ5,000,000) = 35.77±0.01.

Next, we investigated the sensitivity of this algorithm to a, b,
c and d. We can see the influence of both a and b is similar
to that of a in the regenerative-update algorithm from Fig. 4(c),
and the influence of both c and d is similar to that of c in the
regenerative-update algorithm from 4(d). Note that b and d affect
the convergence behavior of the two-timescale algorithm only
through nl.

Comparing these three algorithms, only the regenerative-update
algorithm’s implementation requires storing interim values. Com-
paring the every-update algorithm and the two-timescale algo-
rithm, the former requires more computations since it updates θ at
each time epoch, but the latter contains more tunable parameters.

VI. DISCUSSION

In this paper, we proposed a new two-timescale simulation-
based algorithm for weighted cost problems, and compared it
with every-update and regenerative-update algorithms via nu-
merical experiments on a parking example. Implementation of
the regenerative-update algorithm requires storing interim values
before each regenerative point. The numerical experiments show
that the performance of the two-timescale algorithm is close to
that of the every-update algorithm. However, in some situations
when we need frequent estimation but infrequent control, the
two-timescale algorithm is a better choice than the every-update
algorithm.

In [13] [14], the authors proposed several simulation-based
gradient algorithms for average cost Markov decision processes,
and we are interested in formulating their two-timescale versions
and compare their performances.
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