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1. Introduction
The pricing of American-style derivatives remains
one of the more challenging problems in derivatives
finance. We define American-style derivatives, some-
times termed Bermudan derivatives, to be deriva-
tive contracts with early-exercise opportunities at a
finite number of exercise dates prior to expiration
(as opposed to continuously exercisable for a “pure”
American derivative). The major difficulty in pricing
such derivatives with “early-exercise” features lies in
the determination of optimal early-exercise policies.
Conversely, the pricing of European derivatives—
specifically, European options—is a comparatively
less difficult task. In particular, European call and put
options can be priced analytically under numerous
price processes beyond geometric Brownian motion;
otherwise, they generally can be determined with-
out too much difficulty via a numerical method
such as numerical inversion or simulation. In this
paper, we reduce the complexity of the pricing of an

American-style derivative to that of pricing European
call options. Specifically, by approximating the value
functions with appropriately chosen linear segments
in a dynamic programming recursion, we are able
to price an American-style derivative by pricing a
portfolio of European call options at varying strike
prices, yielding analytical pricing formulas for under-
lying asset price processes with analytical European
call-option prices.
We consider American-style derivatives written on

a single underlying asset that follows a Markovian
price process. One general approach to the pricing of
such derivatives is to cast the problem in the frame-
work of a stochastic dynamic programming prob-
lem and employ a backwards induction algorithm.
However, due to the “curse of dimensionality,” solv-
ing the dynamic programming equations directly can
become prohibitively complex. Specifically, at any
early-exercise date, the payoff from immediate exer-
cise must be compared to the holding value, defined
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as the discounted conditional expectation of the pay-
off from keeping the derivative alive. Computing this
conditional expectation generally requires the deter-
mination of the next-stage value function over its entire
asset space domain.
Our approach to approximating this conditional

expectation essentially follows from the ideas of
numerical quadrature. We first compute the next-
stage value function at a finite number of chosen
“interpolating” points in the asset space domain, and
then approximate this value function with a piece-
wise linear function over these points. Unlike the
true value function, this approximate function can
be easily determined over the entire asset space
domain, and the computing of its conditional expec-
tation is straightforward. An approximate holding
value, defined as the discounted conditional expec-
tation of the approximate next-stage value function,
is then used in the dynamic programming equations.
Although approximating the value function with a
piecewise polynomial of higher order, e.g., a cubic
spline, may result in a better fit, the resulting approx-
imate holding value function will lack the structure
that our method exploits.
We consider two methods for constructing the

piecewise linear approximation of the value function.
The first and simplest approach, which we refer to
as the secant interpolation, consists of simply connect-
ing the interpolating points with secant lines. The
second approach, the tangent interpolation, involves
the piecing together of adjacent tangent lines at the
interpolating points. The key insight to either inter-
polation technique is that the resultant interpolation
function can be expressed as a finite sum of European
call-option payoffs; hence, the holding value at the
previous early-exercise date can be approximated
arbitrarily closely by a finite sum of European call-
option prices. Thus, the far larger arsenal of numer-
ical procedures (and approximations) that have been
developed for pricing European call options can be
directly applied to American-style derivatives via our
methods. For a broad class of problem settings, the
algorithm utilizing the secant interpolation results in
an upper bound on the true derivative price, the algo-
rithm with the tangent interpolation results in a lower
bound, and both methods converge (as the number
of interpolating points is increased) to the true price.
Examples of such problem settings include American-
style put and call options written on an underlying
asset following a wide range of stochastic processes,
including geometric Brownian motion and the Merton
(1976) jump-diffusion model. Numerical experiments
in §3 illustrate the convergence of the two algorithms
for these examples.
The proposed approach can handle pure-jump and

jump-diffusion processes, which can sometimes be

problematic for the most popular pricing methods,
such as partial differentiation equation (PDE) meth-
ods, binomial trees, and other lattice methods. To put
our work in context, we begin by reviewing some of
the (non-simulation-based) literature on pricing Amer-
ican options. Carr et al. (1992) decompose the value of
an American put option in two ways: into the corre-
sponding European put price plus the early-exercise
premium, and also into its intrinsic value and time
value. Their focus, however, is not so much on actual
implementation of numerical procedures. In a closely
related work, Kim (1990) provides an analytical valu-
ation formula for American put-and-call options writ-
ten on a continuous dividend-paying asset. How-
ever, only under certain special cases can the formu-
las be solved explicitly; otherwise, numerical tech-
niques must be used. Ju (1998) approximates the
early-exercise boundary with a multipiece exponential
function, similar to the approach of Omberg (1987).
Broadie and Detemple (1996) develop lower and
upper bounds on the prices of standard American call
and put options via the use of capped options. Amin
(1993) develops an extension of the binomial method
to handle the inclusion of jumps, making it applica-
ble to jump-diffusion models. Similarly, Zhang (1997)
also develops extensions for the PDE finite-difference
method to jump-diffusion models, using variational
inequalities in the pricing of equity options. Das
(1997) develops analogous finite-difference methods
for pricing bond options when the interest rate pro-
cess follows a jump-diffusion model. Huang et al.
(1996) approximate the early-exercise boundary using
Richardson extrapolation, and use this to express the
price of an American option as the price of the cor-
responding European option plus the early-exercise
premium. Their development, however, is more prob-
lem dependent, in that each price process requires a
separate analysis of the corresponding integrals used
in approximating the boundary, and the method was
developed for pure American options.
Another general way of extending beyond geomet-

ric Brownian motion is through Monte Carlo simu-
lation. A number of Monte Carlo–based algorithms
for pricing American-style derivatives have been pro-
posed in the last decade. Many of these algorithms
also cast the problem in a stochastic dynamic pro-
gramming framework and attempt to approximate
the holding values, i.e., the conditional expectations
(see Tilley 1993, Fu et al. 2001, Tsitsiklis and Van Roy
2001, Longstaff and Schwartz 2001, Carriere 1996).
Thus, these algorithms are perhaps the closest in spirit
to our approach. Another simulation-based approach
approximates optimal early-exercise policies directly
rather than the dynamic programming equations (see
Grant et al. 1996, Fu and Hu 1995). Finally, Broadie
and Glasserman (1997a, b) develop algorithms that
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use simulated paths and backwards recursion to
obtain upper and lower bounds.
To summarize our work and put it in the context of

the just-cited literature, our approach has two major
contributions: (i) It provides a new and interesting
way of relating an American-style derivative to cor-
responding European call options; and (ii) it leads
to computational algorithms that may offer compu-
tational savings over existing numerical approaches
in the case of a relatively small number of finite
exercise opportunities, providing bounds in many
cases. In particular, it is significantly more computa-
tionally efficient than simulation-based approaches in
the setting where analytical European call prices are
available. In comparing with PDE and lattice-based
methods, we note that both of these require specifi-
cation of a discretization in both the time axis and
state spaces, which is not required in our method.
As a result, settings that require fine discretization of
the asset price process (especially in the time dimen-
sion) are likely to be computationally burdensome
for either the PDE or lattice-based methods, whereas
this is not the case for our algorithms, which depend
instead on the number and placement of the inter-
polating points (this can be thought of as analo-
gous to a discretization in the state space, as well).
Thus, we conjecture that for up to five exercise dates,
our method would be superior to lattice/PDE meth-
ods. This is consistent with numerical comparisons
to the algorithm of Amin (1993) for a Merton jump-
diffusion put-option example, where the computation
time for the lattice increases dramatically as a function
of the discretization fineness. For the “pure” (contin-
uously exercisable) American case, we use Richard-
son extrapolation on the prices obtained from our
interpolation algorithms, and numerical results indi-
cate that this is also competitive in terms of compu-
tation time and pricing accuracy. Similar conclusions
hold in numerical comparisons with the method of
Huang et al. (1996) on American put options, i.e.,
our method is more effective in the Bermudan set-
ting, but is still a viable alternative for pricing the
American.
The rest of the paper is organized as follows. In §2,

we present the backwards recursion algorithm with
the secant or tangent interpolation of the value func-
tion. Also, we establish criteria for the analytical
upper and lower bounds, discuss convergence with
respect to the number of interpolating points, and
consider the optimal selection of the interpolating
points. In §3, we apply our algorithms to American-
style call and put options and provide numerical
results. In §4, we offer some conclusions and discuss
future applications of our methods. The appendix
includes proofs of all propositions.

2. Backwards Recursion Algorithms
Let St denote the price at time t of an asset
whose price dynamics follow a time-homogeneous,
Markov process (time homogeneity can be relaxed)
governed by

St+�t = h�Z�St�	
� �t > 0�

where 	 is a vector of parameters including the risk-
free interest rate r and the continuous dividend rate 
,
and Z is some random vector independent of St and �
(independence can be relaxed in many cases, but is
required for the accompanying upper- and lower-
bound results). At time t, with St = S, we define
V Et �S�x��
 as the price of a European call option
written on this asset with strike price x and time to
maturity �:

V Et �S�x��
= e−r�EQ��St+�− x
+ � St = S�� (1)

where Q denotes the appropriate risk-neutral (mar-
tingale) measure and �a− b
+ ≡max�a− b�0
. As we
assume time homogeneity in the price process, the
European call prices are also time homogeneous; thus,
we henceforth drop the time indexing in (1) and write
V E�S�x��
.
Next, given the asset price at time t0 = 0, S0, the price

of an American-style derivative with expiration date
T written on the asset can be expressed as the solution
to the following optimal stopping-time problem:

sup
�

EQ�e−r�L��S�
 � S0�� (2)

where Lt�·
 represents the payoff at time t (we assume
the payoff is only a function of the current asset
price), and the supremum is over all stopping times
� ∈ �t0�T �. Henceforth, for ease of notation, we drop
the superscript Q on the expectation, but main-
tain that all subsequent expectations are taken with
respect to this measure. We restrict early-exercise
opportunities to discrete points �ti� i = 1� � � � �N − 1�,
0 = t0 < t1 < · · · < tN = T , where tN is the final exer-
cise date, and, to simplify notation, assume a fixed
timespan ! between exercise dates �! = t1 − t0
. Fur-
ther, without loss of generality, we assume that the
form of the payoff function is independent of the exer-
cise date, in which case we can drop the subscript
on Lt�·
. Finally, we abuse notation slightly by writ-
ing Si for Sti , i= 0� � � � �N .
We let Vi�S
 represent the value of the “live”

derivative at date ti as a function of the underly-
ing asset price S. At the expiration date tN , VN �S
 =
L�S
. At previous dates, we can express Vi�S
 as the
maximum of the derivative’s holding value and exer-
cise value:

Vi�S
=max�L�S
�Hi�S

� (3)
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where the holding value, Hi�S
, is the present value
of the expected one-period-ahead derivative value:

Hi�S
= e−r!E�Vi+1�Si+1
 � Si = S�� (4)

As we have assumed that the derivative cannot
be exercised at t0, the derivative price (2) can be
expressed as V0�S0
=H0�S0
= e−r!E�V1�S1
 � S0�.
Ideally, backwards recursion could be done on (3)

and (4) to obtain the derivative price V0�S0
. However,
prior to the expiration date, it is generally impossi-
ble to obtain the value function Vi�S
 over the entire
asset space domain, yet this is necessary to calculate
the holding value at the previous exercise date. An
alternative approach that we adopt is to replace the
current value function at each early-exercise date with
a suitably chosen approximating value function that
can be determined over the entire asset space, and
then calculate the holding value at the previous exer-
cise date as the discounted expectation of this approx-
imating value function. The details of this general
approach are as follows. At exercise date tN−1,

HN−1�S
 = e−r!E�VN �SN 
 � SN−1 = S�
= e−r!E�L�SN 
 � SN−1 = S� (5)

is the value of a corresponding European option of
length ! , with starting asset price at tN−1 equal to S
and payoff L�·
 at tN . With VN−1 given by (3), we
construct a function �VN−1 that approximates the value
function VN−1, and define 	HN−2 as the approximate
holding-value function obtained by replacing VN−1
with �VN−1 in (4): 	HN−2�S
= e−r!E� �VN−1�SN−1
 � SN−2 = S�.
Proceeding recursively, at exercise date ti, i =

N − 2� � � � �1, we define 	Vi as the current value func-
tion obtained by replacing Hi with 	Hi in (3):

	Vi�S
=max�L�S
� 	Hi�S

� (6)

construct a function �Vi that approximates 	Vi, and
define

	Hi−1�S
= e−r!E� �Vi�Si
 � Si−1 = S�� (7)

The derivative price estimate is then 	V0�S0
 = 	H0�S0

(if exercising is allowed at t0, 	V0�S0
 is given by (6)).
We have assumed that the tN−1 holding value (5) can
be computed without difficulty; otherwise, if deter-
mining the expectation of an approximate value func-
tion �VN to L�·
 is easier than finding the price of a
European derivative with payoff L�·
, the value func-
tion approximation could begin at expiration date tN .
Henceforth, we assume the approximation begins
at tN−1 and, for notational convenience, let 	HN−1 ≡
HN−1 and 	VN−1 ≡ VN−1.
Careful construction of the approximating functions

can result in upper or lower bounds:

Proposition 1. Let i= 0� � � � �N −2. If �Vj ≤ �≥
 	Vj for
j = i+ 1� � � � �N − 1, then 	Vi ≤ �≥
Vi.

Therefore, constructing �Vi as a lower (upper) bound
to 	Vi at all early-exercise dates results in lower (upper)
bounds on the true value functions; in particular,
	V0�S0
 will be a lower (upper) bound on the true
derivative price V0�S0
. Further, the following propo-
sition, which states that errors in the approximation
of 	Vi with �Vi only contribute linearly to the overall
approximation error, will be used in later sections to
establish convergence.

Proposition 2. Let i= 0� � � � �N −2. If � �Vj�S
− 	Vj�S
�
< $j for j = i + 1� � � � �N − 1, then � 	Vi�S
 − Vi�S
� <∑N−1
j=i+1 $j .

Left unspecified up to this point is the selection of
the approximating value function �Vi. In our approach,�Vi is a linear interpolation of the current value func-
tion 	Vi at a selected finite number of interpolating
points in the asset space. This piecewise linear inter-
polation function can be conveniently expressed as
a summation of European call-option payoffs; thus
the approximate holding value (7), as an expecta-
tion of this interpolation function, can be represented
as a portfolio of European call options. Hence, the
valuation of an American-style derivative is essen-
tially reduced to the pricing of European call options.
We consider two types of linear interpolation func-
tions: The secant interpolation function interpolates
with secant lines and the tangent interpolation function
interpolates with tangent lines. In §2.1, we describe the
Secant Algorithm, which utilizes the secant interpola-
tion function in the above general approach, and, with
Proposition 1, show that under certain conditions, the
Secant Algorithm results in upper bounds on the true
derivative price. In §2.2, we provide similar details
for the Tangent Algorithm, which incorporates tangent
interpolation, and show that under certain conditions
the Tangent Algorithm results in lower bounds.

2.1. Secant Algorithm
At date ti, i = N − 1� � � � �1, we assume that 	Vi�·
 is
continuous on �0���; for cases where this is not true,
for example, if 	Vi�·
= 0 for some fixed interval of the
domain space, the construction, while similar, would
need to be updated on a case-by-case basis. We first
choose ni+ 1 interpolating points 0= x�i
0 < x�i
1 < · · ·<
x
�i

ni in the asset space of 	Vi�·
, where x�i
ni is a cho-
sen large value of the asset space. Then the secant
interpolation function, �Vi, linearly interpolates 	Vi with
secant lines connecting the points ��x�i
j � 	Vi�x�i
j 

�nij=0;
see Figure 1.
Specifically, for S ∈ �x�i
0 �x�i
ni �,

�Vi�S
 = m�i
j
(
S− x�i
j−1

)+ 	Vi
(
x
�i

j−1

)
if x�i
j−1 ≤ S < x�i
j � j = 1� � � � �ni�
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Figure 1 Secant Interpolation of Value Function
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j � denote interpolating points, and �m�i�

j � denote slopes of secant
lines.

where, for j = 1� � � � �ni,

m
�i

j =

	Vi
(
x
�i

j

)− 	Vi
(
x
�i

j−1

)
x
�i

j − x�i
j−1

(8)

is the slope of the secant line from �x
�i

j−1� 	Vi�x�i
j−1

 to

�x
�i

j � 	Vi�x�i
j 

. For S > x

�i

ni , we let m

�i

ni+1�S − x

�i

ni 
 +

	Vi�x�i
ni 
 define the limiting line with left endpoint
�x
�i

ni � 	Vi�x�i
ni 

, where the limiting slope, m�i
ni+1, while

unconstrained, should be chosen with regard to the
right-hand limit of 	Vi. For many derivatives, the choice
of m�i
ni+1 is intuitive (e.g., the American call and put
options considered in §3); otherwise, m�i
ni+1 could sim-
ply be set equal to m�i
ni from (8). If m�i
ni+1 < 0, the lim-
iting line intersects the S-axis at x�i
ni − 	Vi�x�i
ni 
/m�i
ni+1 >
x
�i

ni , and we let x

�i

ni+1 = x

�i

ni − 	Vi�x�i
ni 
/m�i
ni+1 and consider

the S-axis as the “new” limiting line for S > x�i
ni+1; i.e.,
m
�i

ni+2 = 0. Otherwise, if m

�i

ni+1 ≥ 0, we let x

�i

ni+1 = �.

Thus, for S > x�i
0 ,

�Vi�S
=



m
�i

j

(
S− x�i
j−1

)+ 	Vi
(
x
�i

j−1

)
if x�i
j−1 ≤ S < x�i
j � j = 1� � � � �ni+ 1�

0 if S ≥ x�i
ni+1�
(9)

We can then prove the following simple result.

Proposition 3.

�Vi�S
= 	Vi
(
x
�i

0

)+ ni+1∑
j=0

(
m
�i

j+1−m�i
j

)(
S− x�i
j

)+
� (10)

where m�i
0 = 0, and, if m�i
ni+1 ≥ 0, the last term of the sum-
mation is zero.

By (7), the approximate holding-value function can
then be expressed as

	Hi−1�S

= e−r! 	Vi

(
x
�i

0

)+ ni+1∑
j=0

(
m
�i

j+1−m�i
j

)
e−r!

·E[(Si− x�i
j )+ � Si−1 = S
]

= e−r! 	Vi
(
x
�i

0

)+ ni+1∑
j=0

(
m
�i

j+1−m�i
j

)
V E

(
S�x

�i

j � !

)
� (11)

where V E�S�x�i
j � !
, defined in (1), is the value of
a European call option with initial price at ti−1
equal to S and maturing at ti with strike price x

�i

j .

Thus, (11) expresses the approximate holding value,
	Hi−1, as a portfolio of European call-option values
of length ! with varying strike prices �x�i
j �

ni+1
j=0 . V

E�S�
x��
 can be evaluated either in a closed-form expres-
sion, as when the process follows geometric Brownian
motion, or via simulation or another numerical
method. The following summarizes the backwards
recursion procedure.

Secant Algorithm
Step 0. Let i=N − 1.
Step 1. Choose interpolating points 0 = x

�i

0 <

x
�i

1 < · · ·< x�i
ni ; and, for j = 0� � � � �ni, compute 	Vi�x�i
j 

via (6), where 	HN−1 =HN−1 via (5), and, for i < N − 1,
	Hi is given by (11).
Step 2. Let m�i
0 = 0, and, for j = 1� � � � �ni, com-

pute m�i
j via (8).
Step 3. Choose m�i
ni+1. If m

�i

ni+1 < 0, let x

�i

ni+1 = x

�i

ni −	Vi�x�i
n 
/m�i
ni+1, and m

�i

ni+2 = 0.

Step 4. i (= i−1. If i > 0, return to Step 1. Otherwise,
return 	V0�S0
= 	H0�S0
 via (11).
If 	Vi, i = 1� � � � �N − 1, is convex over its entire

domain, a careful selection of the limiting slope m�i
ni+1
will result in a price estimate 	V0�S0
 that is an ana-
lytical upper bound on the true derivative price. To
be more precise, as indicated graphically in Figure 1,
	Vi convex implies �Vi�S
≥ 	Vi�S
 for S ≤ x�i
ni , and, if the
limiting secant line with slope m�i
ni+1 is chosen such
that �Vi�S
 ≥ 	Vi�S
 for S > x�i
ni , we will have �Vi ≥ 	Vi,
which, with Proposition 1, implies upper bounds on
the true value functions. Proposition 4 provides con-
ditions under which the approximating value func-
tion, 	Vi, is convex under the secant algorithm.

Proposition 4. Suppose L�·
 is convex. If either L�·

is nondecreasing and h�Z� ·�	
 is convex, or L�·
 is non-
increasing and h�Z� ·�	
 is concave, then HN−1 and VN−1
are convex. For i=N − 1� � � � �1, if 	Vi and h�Z� ·�	
 are
convex, m�i
ni+1 ≥m

�i

ni , and h�Z� ·�	
 is linear or m�i
1 ≥ 0,

then 	Hi−1 and 	Vi−1 are convex.

By Proposition 2, convergence of the secant algo-
rithm with the number of interpolating points requires
being able to arbitrarily bound � �Vi�S
− 	Vi�S
� at each
early-exercise date. Consider date ti and assume x =
b is the chosen rightmost interpolating point; i.e.,
for ni + 1 interpolating points, b = x�i
ni . The quantity
� �Vi�S
− 	Vi�S
� can be arbitrarily bounded for S ≤ b by
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simply adding interpolating points in �0� b�; however,
bounding � �Vi�S
− 	Vi�S
� for S > b directly depends on
the choice of the limiting slope. For the American put-
and-call options considered in §3, this tail error can be
bounded and convergence follows.

2.2. Tangent Algorithm
The secant interpolation function only requires the
evaluation of the current value function at a finite
number of interpolating points. The tangent interpo-
lation function is somewhat more difficult in that con-
structing tangent lines at these interpolating points
also requires the first derivative of the current value
function. However, for many processes, the struc-
ture of the approximate value function that develops
throughout the algorithm allows for a relatively easy
calculation of its first derivative.
The details of the tangent interpolation closely

parallel those for the secant interpolation provided
in §2.1. At date ti, i = N − 1� � � � �1, we again assume
the current value function, 	Vi�·
, to be continuous on
�0���, and we first choose ni+ 1 interpolating points
0= x�i
0 < x�i
1 < · · ·< x�i
ni . We then construct the tangent
interpolation function �Vi on the interpolating points
by piecing together adjacent tangent lines at each of
the points ��x�i
j � 	Vi�x�i
j 

�nij=0; see Figure 2. Specifically,
for j = 0� � � � �ni, m�i
j �S − x�i
j 
+ 	Vi�x�i
j 
 is the tangent
line to 	Vi�·
 at x�i
j , where m�i
j = �) 	Vi�S
/)S
�S=x�i
j (we
defer discussion of the determination of ) 	Vi�S
/)S for
now). Letting �y�i
−1� z

�i

−1
≡ �x�i
0 � 	Vi�x�i
0 

 and �y�i
ni � z�i
ni 
≡

�x
�i

ni � 	Vi�x�i
ni 

, for j = 0� � � � �ni − 1, we define �y�i
j � z�i
j 


as the point of intersection of the tangent lines at x�i
j

Figure 2 Tangent Interpolation of Value Function

ˆ

˜

Vi

Vi

(i)m1

(i)m2

(i)m0

(i)x0
(i)y0

(i)x1
(i)y1

(i)x2

Notes. �x�i�

j � denote interpolating points, �m�i�

j � denote slopes of tangent
lines, and �y �i�

j � denote intersection points of tangent lines.

and x�i
j+1, respectively; i.e.,

y
�i

j = m

�i

j+1x

�i

j+1−m�i
j x�i
j − 	Vi

(
x
�i

j+1

)+ 	Vi
(
x
�i

j

)
m
�i

j+1−m�i
j

� (12)

Without loss of generality, we assume that adja-
cent tangent lines do indeed intersect; in the rare
instance where we have parallel, nonintersecting
adjacent tangent lines, we could adjust the chosen
interpolating points. Similarly, we can assume that for
j = 0� � � � �ni−1, x�i
j ≤ y�i
j ≤ x�i
j+1. Next, we note that for
j = 0� � � � �ni, the tangent line to 	Vi�·
 at x�i
j can also be
written as either m�i
j �S− y�i
j−1
+ z�i
j−1 or m�i
j �S− y�i
j 
+
z
�i

j . Thus, for S ∈ �x�i
0 �x�i
ni �, the tangent interpolation
function, �Vi, can be expressed as

�Vi�S
=m�i
j
(
S− y�i
j−1

)+ z�i
j−1
if y�i
j−1 ≤ S < y�i
j � j = 0� � � � �ni�

For S > x�i
ni ≡ y�i
ni , the construction of �Vi is identical up
to notation to that for the secant interpolation func-
tion. Again choosing the limiting slope m�i
ni+1 with
respect to the right-hand limit of 	Vi �m�i
ni+1 = m

�i

ni is

the simplest alternative), we let m�i
ni+1�S − y
�i

ni 
 + z�i
ni

define the limiting line with left endpoint �y�i
ni � z
�i

ni 
=

�x
�i

ni � 	Vi�x�i
ni 

. If m�i
ni+1 < 0, we let y

�i

ni+1 = y

�i

ni −z�i
ni /m�i
ni+1

and consider the S-axis as the “new” limiting line for
S > y

�i

ni+1; i.e., m

�i

ni+2 = 0. Otherwise, if m

�i

ni+1 ≥ 0, we let

y
�i

ni+1 =�. Thus, for S ≥ x�i
0 ,

�Vi�S
=



m
�i

j

(
S− y�i
j−1

)+ z�i
j−1
if y�i
j−1 ≤ S < y�i
j � j = 0� � � � �ni+ 1�

0 if S ≥ y�i
ni+1�
The following result parallels Proposition 3.

Proposition 5.

�Vi�S
= 	Vi
(
x
�i

0

)+ ni+1∑
j=−1

(
m
�i

j+1−m�i
j

)(
S− y�i
j

)+
�

where m�i
−1 = 0, and, if m�i
ni+1 ≥ 0, the last term of the sum-
mation is zero.

Thus, analogous to the secant algorithm, the
approximate holding value can be expressed as

	Hi−1�S
= e−r! 	Vi
(
x
�i

0

)+ ni+1∑
j=−1

(
m
�i

j+1−m�i
j

)
V E

(
S�y

�i

j � !

)
(13)

by (7), where V E�S�x��
 is given by (1).
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We now consider the calculation of the tangent line
slopes. For i=N − 1� � � � �1, by (6),

)

)S
	Vi�S
=



)

)S
	Hi�S
 if 	Hi�S
 > L�S
�

)

)S
L�S
 if 	Hi�S
 < L�S
�

(14)

at all points of differentiability of 	Vi. Generally, the
only points of nondifferentiability of 	Vi will be when	Hi�S
 = L�S
; thus, for most cases, we would only
select interpolating points for �Vi�·
 where the hold-
ing and exercising values do not equal. Assuming
)L�S
/)S is easily calculated, we consider ) 	Hi�S
/)S.
First, at tN−1, for a smooth price process where the
dominated convergence theorem could be applied, we
have by (5),

)

)S
HN−1�S
= e−r!E

[
)

)S
L�SN 


∣∣∣SN−1 = S
]
� (15)

Next, at ti, i=N − 2� � � � �1, by (13),
)

)S
	Hi�S
=

ni+1+1∑
j=−1

(
m
�i+1

j+1 −m�i+1
j

) )
)S
V E

(
S�y

�i+1

j � !

)
�

(16)
Thus, the determination of the tangent line slopes
over the entire recursion only requires )HN−1�S
/)S
and )V E�S�x��
/)S. In general, for a smooth
price process where European call-option values
can be determined analytically, )HN−1�S
/)S and
)V E�S�x��
/)S can also be determined analytically,
or at least easily approximated by a finite difference
estimate.
Finally, if computing )HN−1�S
/)S is more difficult

than computing )V E�S�x��
/)S, it may be beneficial
to begin the tangent interpolation, i.e., the value func-
tion approximation, at the expiration date tN , rather
than at tN−1. In this case, )HN−1�S
/)S can be com-
puted via (16). We again provide a step-by-step sum-
mary of the backwards recursion algorithm.

Tangent Algorithm
Step 0. Let i=N − 1.
Step 1. Choose interpolating points 0 = x

�i

0 <

x
�i

1 < · · ·< x�i
ni ; and, for j = 0� � � � �ni, compute 	Vi�x�i
j 

via (6), where 	HN−1 =HN−1 via (5), and, for i < N − 1,
	Hi is given by (13).
Step 2. Let m�i
−1 = 0, and, for j = 0� � � � �ni, calculate

m
�i

j = �) 	Vi�S
/)S
�S=xj via (14), where ) 	HN−1�S
/)S =

)HN−1�S
/)S via (5) and/or (15), and, for i < N − 1,
) 	Hi�S
/)S is given by (16).
Step 3. Let y�i
ni = x�i
ni , y�i
−1 = x�i
0 , and, for j = 0� � � � �

ni− 1, compute y�i
j via (12).
Step 4. Choose m�i
ni+1. If m

�i

ni+1 < 0, let y

�i

ni+1 = x

�i

ni −	Vi�x�i
n 
/m�i
ni+1 and m

�i

ni+2 = 0.

Step 5. i (= i−1. If i > 0, return to Step 1. Otherwise,
return 	V0�S0
= 	H0�S0
 via (13).
Analogous to the secant algorithm where convexity

of the approximate value function may lead to upper
bounds, convexity may lead to lower bounds for the
tangent algorithm. Specifically, if for i= 1� � � � �N − 1,
	Vi is convex over its entire domain, then �Vi�S
≤ 	Vi�S

for S ≤ x�i
ni (see Figure 2) and, if slope m�i
ni+1 is cho-
sen such that �Vi�S
 ≤ 	Vi�S
 for S > x�i
ni , we will have
that �Vi ≤ 	Vi, which, with Proposition 1, implies lower
bounds on the true value functions. In particular,
	V0�S0
 will be a lower bound on the true derivative
price. Proposition 6 parallels Proposition 4 and pro-
vides conditions for which 	Vi is convex under the tan-
gent algorithm.

Proposition 6. Suppose L�·
 is convex. If either L�·

is nondecreasing and h�Z� ·�	
 is convex, or L�·
 is non-
increasing and h�Z� ·�	
 is concave, then HN−1 and VN−1
are convex. For i=N − 1� � � � �1, if 	Vi and h�Z� ·�	
 are
convex, m�i
ni+1 ≥m

�i

ni , and h�Z� ·�	
 is linear or m�i
0 ≥ 0,

then 	Hi−1 and 	Vi−1 are convex.

In particular, by Propositions 4 and 6, if h�Z� ·�	

is linear and L�·
 is convex and monotone, a care-
ful choice of the limiting slopes at each early-exercise
date will result in upper and lower bounds on the
true derivative price via the secant and tangent algo-
rithms, respectively. Convergence of the tangent algo-
rithm with the number of interpolating points can be
established via Proposition 6 using a similar argument
as for the secant algorithm, again depending on the
choice of the limiting slopes.
The accuracy of the secant or tangent algorithm is

clearly dependent on the selection of the interpolat-
ing points. If possible, the interpolating points should
be chosen so as to minimize the error in replac-
ing the current value function 	Vi with the interpo-
lation function �Vi. In this regard, more interpolating
points should be concentrated on the areas of the
state space where 	Vi is most convex or concave. One
simple heuristic where the interpolating points are
chosen iteratively is as follows: Given a current set
of points and the corresponding secant or tangent
lines, additional interpolating points are inserted into
those areas where the absolute difference between the
slopes of adjacent secant or tangent lines is large, as
these areas should correspond to areas of higher con-
vexity or concavity. Further discussion of the selec-
tion of interpolating points can be found in Laprise
(2002), which includes alternative heuristics for itera-
tively selecting the interpolating points, discusses the
possible accumulation of errors as a result of poorly
chosen interpolating points, and, for the secant inter-
polation algorithm, shows that using the same set of
interpolating points at each early-exercise date may
result in a reduction of overall computational time.
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3. American-Style Call and Put
Options

We illustrate the numerical properties of the algo-
rithms by pricing two common American-style
derivatives: (dividend-paying) call and put options.
By following a specific approach to the selection of
interpolating points and limiting slopes, we prove
that for a wide range of underlying stochastic pro-
cesses, the secant and tangent interpolation algo-
rithms result in analytical upper and lower bounds,
respectively, and argue that both algorithms converge
to the true option price with the number of interpo-
lating points. We also prove that for each option, opti-
mal early-exercise policies are threshold policies and
the algorithms provide analytical bounds on the true
thresholds. Included in this class of stochastic pro-
cesses are geometric Brownian motion and the Merton
(1976) jump diffusion, which we consider as examples
in §§3.3 and 3.4, respectively.
The put-and-call options are assumed to be writ-

ten on an underlying asset that possibly pays conti-
nous dividends at a rate of 
≥ 0. For the call option,
we assume 
 > 0; otherwise, as is well known, the
optimal exercise policy is to never early exercise and
the American-style option is essentially a European
option. For the propositions in this section, we con-
sider stochastic processes that satisfy the following
assumptions:

Assumptions.

Assumption 1. 0≤ )V E�S�x��
/)S ≤ e−
�.

Assumption 2. V E�0�x��
= 0.
Assumption 3. For the call option, h�Z� ·�	
 is con-

vex; for the put option, h�Z� ·�	
 is linear.

We note that h�Z� ·�	
 linear will also satisfy
Assumption 3 for the call option. Assumption 1 is a
mild condition equivalent to nonnegative and non-
positive deltas for the European call and put options,
respectively. Further, for a multiplicative process, i.e.,
St+�t = StXt� t+�t where Xt� t+�t �>0
 is a random vari-
able independent of all �Su� u ≤ t�, Assumptions 2
and 3 are trivially satisfied. The stock price models
we consider are multiplicative.
The results in this section implicitly assume that

exact European call values and European call delta
values are available, whereas only the call values are
needed for the secant algorithm. However, we note
that only the claims in this section, e.g., the upper
and lower bounds, are dependent upon these exact
values and the satisfaction of the above assumptions;
the specific procedures detailed are applicable for a
wide range of underlying stock price models.

3.1. Call Option
In this case, L�S
 = �S − K
+, and we assume 
 > 0.
The holding value at the latest early-exercise date is
simply the value of a European call option:

HN−1�S
= e−r!E��S−K
+ � SN−1 = S�
= V E�S�K�!
� (17)

Thus, in applying the secant or tangent algorithm to
the American call option, the European call option
is the only option that needs pricing. For the tan-
gent algorithm, because HN−1�S
 = V E�S�K�!
, the
discussion in §2.2 implies that the determination of
the tangent line slopes only requires the delta of the
European call option, )V E�S�x��
/)S.
We now show that the optimal exercise policy at

tN−1 is a threshold policy. First, VN−1�S
=HN−1�S
 for
S ≤K, and by (17) and Assumption 1, )HN−1�S
/)S ≤
e−
! < 1. Thus, as )�S − K
/)S = 1, there exists a
finite s∗N−1 > K such that HN−1�s∗N−1
 = L�s∗N−1
 and
HN−1�S
 > �<
L�S
 for S < �>
s∗N−1; i.e., the option
should only be exercised if S ≥ s∗N−1 and

VN−1�S
=


HN−1�S
 if S < s∗N−1�

L�S
= S−K if S ≥ s∗N−1�
(18)

For both algorithms, we take advantage of linearity
in the value functions and choose interpolating points
accordingly. For ease of notation, we assume a fixed
number of interpolating points at each early-exercise
date and omit the subscript on ni.

Secant Algorithm. We apply the secant algorithm
via the general summary provided in §2.1 with
some added specifications. As VN−1�S
 is linear with
slope 1.0 for S ≥ s∗N−1, we let x

�N−1

n = s∗N−1 and

m
�N−1

n+1 = 1�0 (as HN−1 is given by (17), we assume s∗N−1

can be determined numerically via some rootfinding
method). After choosing interpolating points between
x
�N−1

0 = 0 and x�N−1


n , 	HN−2 and 	VN−2 can be deter-
mined via (11) and (6), respectively. Moreover, 	HN−2
also invokes a threshold policy for the approximate
value function at tN−2; i.e.,

	VN−2�S
=



	HN−2�S
 if S < s̃∗N−2�

L�S
= S−K if S ≥ s̃∗N−2�

for some finite s̃∗N−2 >K. Proceeding recursively, at ti,
given that 	Vi admits a threshold policy with thresh-
old s̃∗i , if we let x

�i

n = s̃∗i and m�i
n+1 = 1�0, the resultant	Hi−1 invokes a threshold policy at ti−1. The follow-

ing proposition formalizes this result, and via Propo-
sition 4, states that the approximate value functions
provide upper bounds on the true value functions; in
particular, 	V0�S0
≥ V0�S0
. For Propositions 7, 8, and 9,	HN−1 ≡ HN−1 is given by (17), s̃∗N−1 ≡ s∗N−1 is given
by (18), and s∗0 and s̃

∗
0 are taken to be infinity.
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Proposition 7 (Secant Algorithm for American
Call). Let i = 0� � � � �N − 1. If x�j
n = s̃∗j and m�j
n+1 = 1�0
for j = i+ 1� � � � �N − 1, there exists a finite s̃∗i > K such
that

	Vi�S
=



	Hi�S
 if S < s̃∗i �

L�S
= S−K if S ≥ s̃∗i �
Further, 	Vi ≥ Vi and 	Hi ≥Hi.
By Proposition 7, for i = 1� � � � �N − 1, �Vi�S
= 	Vi�S


for S > s̃∗i = x�i
n . Hence, by Proposition 2 and the argu-
ment in §2.1, the secant algorithm converges with the
number of interpolating points. Next, Proposition 8
states that the true optimal early-exercise policies are
threshold policies and the approximate thresholds
provide upper bounds on the true thresholds.

Proposition 8. For i = 1� � � � �N − 1, there exists
an s∗i , where K ≤ s∗i ≤ s̃∗i , such that

Vi�S
=


Hi�S
 if S < s∗i �

L�S
= S−K if S ≥ s∗i �

Tangent Algorithm. We also include some added
specifications in the application of the tanget algo-
rithm. At tN−1, we again take advantage of the lin-
earity of VN−1 and let x

�N−1

n = s∗N−1 and m

�N−1

n+1 = 1�0.

However, because VN−1�·
 is nondifferentiable at s∗N−1,
we let m�N−1


n = )HN−1�S
/)S�S=x�N−1

n
, where HN−1 is

given by (17). Further, as HN−1�0
 = 0 by (17) and
Assumption 2, we set m�N−1


0 = 0 to ensure lower
bounds. Then, as for the secant algorithm, 	HN−2, given
by (13), invokes a threshold policy for 	VN−2, and pro-
ceeding recursively, constructing the tangent interpo-
lation function as above at each early-exercise date
results in threshold policies throughout. Further, the
approximate value functions and thresholds provide
lower bounds on the true value functions and thresh-
olds, respectively.

Proposition 9 (Tangent Algorithm for Amer-
ican Call). Let i = 0� � � � �N − 1. If x�j
n = s̃∗j , m�j
0 =
0, m�j
n = ) 	Hj�S
/)S�S=x�j
n , and m

�j

n+1 = 1�0 for j = i +

1� � � � �N − 1, there exists a finite s̃∗i > K such that

	Vi�S
=



	Hi�S
 if S < s̃∗i �

L�S
= S−K if S ≥ s̃∗i �

Further, 	Vi ≤ Vi, 	Hi ≤Hi, and s̃∗i ≤ s∗i .
In particular, 	V0�S0
≤ V0�S0
. As previously argued

for the secant algorithm, Proposition 9 implies the
convergence of the tangent algorithm with the num-
ber of interpolating points.

3.2. Put Option
In this case, L�S
= �K−S
+. The holding value at tN−1
is the value of a European put option, and by put-call
parity, we have:

HN−1�S
=Ke−r! − Se−
! +V E�S�K�!
� (19)

Therefore, as is the case for the American call option,
the European call option is the only option that
needs pricing when applying the secant or tan-
gent algorithm to the American put pricing problem.
Further, (19) implies that the only requirement for
determining the tangent line slopes is )V E�S�x��
/)S.
As for the call option, the optimal early-exercise

policy at tN−1 is a threshold policy. In particular,
for S ≥ K, HN−1�S
 > L�S
 = 0, and, by (19) and
Assumption 2, HN−1�0
 = Ke−r! ≤ K = L�0
. Further,
by (19) and Assumption 1, )HN−1�S
/)S ≥−1. There-
fore, there exists an s∗N−1 <K such that HN−1�S
 < L�S

for S < s∗N−1 and HN−1�S
≥ L�S
 for S ≥ s∗N−1; i.e.,

VN−1�S
=


L�S
=K− S if S < s∗N−1�

HN−1�S
 if S ≥ s∗N−1�
(20)

Thus, the option should only be exercised if S ≤ s∗N−1;
in particular, s∗N−1 is positive unless r = 0. In applying
our algorithms, we again take advantage of linearity
in the value functions.

Secant Algorithm. As VN−1�S
 is linear with slope
−1�0 for S ≤ s∗N−1, we let x

�N−1

1 = s∗N−1 and m

�N−1

1 =

−1�0. Next, by (19) and (20), VN−1�S
 approaches
zero with increasing S; thus, given some small toler-
ance $, we choose x�N−1


n > K large enough such that
HN−1�x

�N−1

n 
 < $, and, to ensure upper bounds, let

m
�N−1

n+1 = 0. Then, after choosing interpolating points

between x�N−1

1 and x�N−1


n , 	HN−2 can be determined
via (11). In particular, as m�N−1


n+1 ≥ 0, the last term
in the summation of (11) is zero, and, as x�N−1


0 = 0,
VN−1�x

�N−1

0 
= L�0
= K, and V E�S�0� !
= Se−
! , 	HN−2

can be written as:

	HN−2�S
 = Ke−r!−Se−
!

+
n∑
j=1

(
m
�N−1

j+1 −m�N−1


j

)
V E

(
S�x

�N−1

j �!

)
� (21)

Comparing (19) and (21), we note that the European
call option component of the holding value at tN−1
consists of one call option, while the respective com-
ponent for the approximate holding value at tN−2 con-
sists of a portfolio of call options. Next, it can be
shown that 	HN−2 invokes a threshold policy in the
approximate value function at tN−2, i.e.,

	VN−2�S
=


L�S
=K− S if S < s̃∗N−2�

	HN−2�S
 if S ≥ s̃∗N−2�
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for some s̃∗N−2 < K. Also, as V E�S�x��
 ap-
proaches Se−
! − xe−r� for S � x and, in (21),∑n
j=1�m

�N−1

j+1 − m�N−1


j 
 = 1, limS→� 	HN−2�S
 = 0; hence
limS→� 	VN−2�S
= 0. Proceeding recursively, at ti, given
that 	Vi admits a threshold policy with threshold s̃∗i
and limS→� 	Vi�S
= 0, we let x�i
1 = s̃∗i , m�i
1 =−1�0, and
m
�i

n+1 = 0, and choose interpolating points x�i
2 � � � � � x�i
n ,

where x�i
n > K is arbitrarily large. Then, the resul-
tant 	Hi−1 again triggers a threshold policy at ti−1,
has a form identical to that seen in (21), and thus
approaches zero with increasing S. The following
proposition formalizes this result, and via Proposi-
tion 4, states that the approximate value functions
provide upper bounds on the true value functions; in
particular, 	V0�S0
≥ V0�S0
. For Propositions 10, 11, and
12, 	HN−1 ≡HN−1 is given by (19), s̃∗N−1 ≡ s∗N−1 is given
by (20), and s∗0 and s̃

∗
0 are taken to be zero.

Proposition 10 (Secant Algorithm for Ameri-
can Put). Let i= 0� � � � �N − 1. If x�j
1 = s̃∗j , m�j
1 =−1�0,
x
�j

n > K, and m�j
n+1 = 0 for j = i+1� � � � �N −1, there exists

an s̃∗i < K such that 	Hi�S
 < �≥
L�S
 for S < �≥
s̃∗i ; i.e.,

	Vi�S
=


L�S
=K− S if S < s̃∗i �

	Hi�S
 if S ≥ s̃∗i �
where, for i < N − 1, 	Hi can be written in the following
form:

	Hi�S
 = Ke−r! − Se−
!

+
n∑
p=1

(
m
�i+1

p+1 −m�i+1
p

)
V E

(
S�x�i+1
p � !

)
� (22)

Further, 	Vi ≥ Vi and 	Hi ≥Hi.
We next consider convergence with the number of

interpolating points. For i= 1� � � � �N − 2, by Proposi-
tion 10, limS→� 	Vi�S
= 0. Thus, as previously argued
for i=N − 1, for arbitrary tolerance $, we can choose
x
�i

n large enough such that 	Vi�x�i
n 
 < $; in which case,
given that m�i
n+1 = 0, � �Vi�S
 − 	Vi�S
� < $ for S > x�i
n .
So, for sufficiently large x�i
n and enough interpolat-
ing points, � �Vi�S
− 	Vi�S
� can be arbitrarily bounded
which implies convergence.
Next, Proposition 11 states that the true optimal

early-exercise policies are threshold policies and the
approximate thresholds provide lower bounds on the
true thresholds.

Proposition 11. For i = 1� � � � �N − 1, there exists
an s∗i , where s̃∗i ≤ s∗i < K, such that

Vi�S
=


L�S
=K− S if S < s∗i �

Hi�S
 if S ≥ s∗i �
Tangent Algorithm. As for the secant algorithm,

we set x�N−1

1 = s∗N−1; however, with the nondiffer-

entiability of VN−1�S
 at S = s∗N−1, we set m
�N−1

1 =

)HN−1�S
/)S�S=x�N−1

1
. Also, we let m�N−1


0 = −1�0 and
�y
�N−1

0 � z

�N−1

0 
 = �x

�N−1

1 �VN−1�x

�N−1

1 

. Further, we

choose x
�N−1

n arbitrarily large and let the limit-

ing slope m
�N−1

n+1 = m

�N−1

n . As HN−1, hence VN−1,

is a decreasing function, m�N−1

n+1 < 0, which implies

y
�N−1

n+1 <� and m�N−1


n+2 = 0. Then, 	HN−2 can be deter-
mined via (13), and, in particular, as y�N−1


−1 = x�N−1

0 =

0, 	VN−1�x
�N−1

0 
 = L�0
 = K, and V E�S�0� !
 = Se−
! ,

	HN−2 can be written in the following form:

	HN−2�S
 = Ke−r! − Se−
!

+
n+1∑
j=0

(
m
�N−1

j+1 −m�N−1


j

)
V E

(
S�y

�N−1

j � !

)
�

Thus, we have a similar form for the approximate
holding value at tN−2 using the tangent interpolation
as when using the secant interpolation (21). Recur-
sively constructing �Vi in this same manner, we find
that the approximate holding values admit thresh-
old policies, the approximate value functions provide
lower bounds on the true value functions, and the
approximate thresholds provide upper bounds on the
true thresholds.

Proposition 12 (Tangent Algorithm for Amer-
ican Put). Let i = 0� � � � �N − 1. If x�j
1 = s̃∗j , y�j
0 = x�j
1 ,
m
�j

0 = −1�0, m�j
1 = ) 	Hj�S
/)S�S=x�j
1 , and m�j
n+1 = m�j
n for

j = i + 1� � � � �N − 1, there exists an s̃∗i < K such that
	Hi�S
 < �≥
L�S
 for S < �≥
 s̃∗i ; i.e.,

	Vi�S
=
{
L�S
=K− S if S < s̃∗i �

	Hi�S
 if S ≥ s̃∗i �
where 	Hi can be written in the following form:

	Hi�S
 = Ke−r! − Se−
!

+
n+1∑
p=0

(
m
�i+1

p+1 −m�i+1
p

)
V E

(
S�y�i+1
p � !

)
�

Further, 	Vi ≤ Vi, 	Hi ≤Hi, and s̃∗i ≥ s∗i .
In particular, 	V0�S0
 ≥ V0�S0
. As argued for

the secant algorithm, 	Vi is a decreasing function
approaching zero; hence, with m�i
n+1 = m

�i

n < 0, for

any $ where 	Vi�x�i
n 
 < $, � �Vi�S
− 	Vi�S
�< $ for S > x�i
n ,
implying convergence with number of interpolating
points.
In the next two sections, we price call and put op-

tions via the procedures detailed in §§3.1 and 3.2 on
assets following geometric Brownian motion (3.3) and
Merton jump diffusion (3.4).

3.3. Geometric Brownian Motion
We assume the underlying stock price process fol-
lows geometric Brownian motion: dSt = St��r − 

dt+
2dWt�, where Wt is a standard Brownian motion
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process and 2 is the volatility. This leads to the mul-
tiplicative lognormal price process:

St+�t = h�Z�St�	
= Ste�r−
−22/2
�t+2
√
�tZ� (23)

where Z ∼ N�0�1
 and 	 = �r�
�2�. The European
call-option price is given by the Black-Scholes
formula:

V E�S�x��
= Se−
�4�a+2√�
− xe−r!4�a
�
where

a= log�S/x
+ �r − 
−2
2/2
�

2
√
�

� (24)

and 4�·
 is the standard normal cumulative distribu-
tion function. Thus, the European call-option delta is
given by

)

)S
V E�S�x��
= e−
�4�a+2√�
� (25)

where a is given in (24). By (25), Assumption 1 is sat-
isfied, and as the price process (23) is multiplicative,
Assumptions 2 and 3 are satisfied. Hence, Proposi-
tions 7–12 apply; in particular, the secant and tan-
gent algorithms provide analytical upper and lower
bounds, respectively, on the American-style call and
put option prices.
Table 1 shows the results of applying the algorithms

to a three-year call option, exercisable every 0.5 years,
with strike price K = 100, 2 = 0�2, r = 0�05, and

= 0�04. For each choice of n (# interpolating points),
Table 1 displays option price estimates for a range of
starting asset prices, the corresponding threshold esti-
mates (threshold values are independent of the start-
ing prices, and the t5 = 2�5 threshold is omitted, as
it is obtained independently), and CPU times (in sec-
onds). The final row, labeled “Eur,” displays the cor-
responding European call prices, i.e., no early-exercise
opportunities, given by (24) with �= 3�0.

Table 1 Bermudan Call Option on Asset Under Geometric Brownian Motion

Option price Thresholds

Alg type n S0 = 60 S0 = 90 S0 = 100 S0 = 110 S0 = 140 t1 = 0
5 t2 = 1
0 t3 = 1
5 t4 = 2
0 CPU

Tan 10 0
718 8
431 13
355 19
331 42
129 157
53 153
40 148
15 141
35 0
03
20 0
825 8
582 13
507 19
487 42
251 158
19 153
87 148
54 141
61 0
07
50 0
864 8
624 13
547 19
526 42
280 158
38 154
02 148
65 141
69 0
24
100 0
870 8
630 13
553 19
532 42
285 158
41 154
04 148
66 141
70 0
85
200 0
874 8
631 13
554 19
533 42
286 158
42 154
05 148
67 141
70 3
30

Sec 200 0
880 8
633 13
556 19
535 42
288 158
43 154
06 148
68 141
70 2
20
100 0
887 8
637 13
559 19
538 42
290 158
44 154
07 148
68 141
71 0
62
50 0
909 8
648 13
571 19
551 42
303 158
56 154
13 148
74 141
77 0
16
20 1
056 8
751 13
674 19
656 42
384 159
17 154
98 149
37 141
88 0
05
10 1
298 9
132 14
104 20
145 42
881 163
42 155
71 149
77 142
47 0
02

Eur 0
873 8
548 13
371 19
179 40
741

Notes. K = 100, ti = 0
5�1
0�1
5�2
0�2
5�3
0 yrs, n: number of interpolating points, “Eur”: European price.

Our results show that the upper and lower bounds
via the secant and tangent algorithms, respectively,
tighten quickly with the number of interpolating
points. For example, with just 100 interpolating
points, the upper and lower bounds are within a
penny of the true price. The convergence is even
faster for the threshold values. To get an idea of
the relative computational burden with respect to
other methods, we also estimated the prices using
a binomial lattice on the same computational plat-
form. The results indicate comparable price accuracy-
computation trade-offs. For example, in the S0 = 100
case, a discretization of daily increments led to a lat-
tice price of $13.552 taking 0.36 CPU seconds, falling
somewhere between the n = 50 and n = 100 results
of the tangent algorithm in terms of both accuracy
and computation. A thrice finer discretization yields
a more accurate price of $13.554 taking 3.95 CPU
seconds, corresponding roughly to the n = 200 tan-
gent algorithm. Also, other numerical experiments
reported in Laprise (2002) indicate only linear growth
in the computation time of our algorithm with the
number of exercise dates.
Analogous to Table 1, Table 2 shows the results

of applying the secant and tangent algorithms to a
put option with the same parameters as for the call,
except for the dividend rate set to zero. The row
labeled “Eur” displays the corresponding European
put prices given by (19) and (24) with �= 3�0. Again,
the bounds on the option price tighten quickly with
the number of interpolating points; see also Figure 3
illustrating the convergence for the S0 = 100 case.
The in-the-money prices are the most accurate; e.g.,
for S0 = 60, only 10 interpolating points are needed
for the upper and lower bounds to bracket the true
price to within a penny, whereas over 200 points are
required for comparable accuracy for S0 = 140. The
threshold bounds for the put option are even tighter
than for the call (Table 1).
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Table 2 Bermudan Put Option on Asset Under Geometric Brownian Motion

Option price Thresholds

Alg type n S0 = 60 S0 = 90 S0 = 100 S0 = 110 S0 = 140 t1 = 0
5 t2 = 1
0 t3 = 1
5 t4 = 2
0 CPU

Tan 10 37
553 12
831 8
329 5
332 1
250 83
18 84
11 85
37 87
22 0
03
20 37
554 12
884 8
412 5
453 1
434 83
09 84
04 85
33 87
20 0
06
50 37
554 12
902 8
440 5
489 1
476 83
06 84
03 85
32 87
20 0
25
100 37
554 12
904 8
444 5
494 1
491 83
06 84
03 85
32 87
20 0
86
200 37
554 12
905 8
445 5
497 1
497 83
06 84
03 85
32 87
20 3
50

Sec 200 37
554 12
906 8
447 5
500 1
506 83
06 84
02 85
32 87
20 2
30
100 37
554 12
909 8
451 5
506 1
522 83
06 84
02 85
32 87
20 0
60
50 37
554 12
913 8
459 5
518 1
550 83
05 84
02 85
32 87
20 0
18
20 37
554 12
947 8
508 5
577 1
611 82
99 83
98 85
29 87
19 0
05
10 37
559 13
172 8
759 5
810 1
740 82
59 83
82 85
18 87
15 0
03

Pure Am 4 36
26 12
30 8
01 5
20 1
41 0
11
6 37
55 12
65 8
22 5
35 1
45 0
21
12 38
23 12
96 8
44 5
50 1
49 1
0

Eur 27
967 10
240 6
995 4
710 1
367

Notes. K = 100, ti = 0
5�1
0�1
5�2
0�2
5�3
0 yrs, “pure Am”: estimated pure American price, n: number of interpolating points for
Tan/Sec and number of intervals for pure Am, “Eur”: European price.

The “pure Am” entries indicate a price estimate
for the continuously exercisable American put using
the method of Huang et al. (1996), where # intervals
indicates the number of intervals used in approxi-
mating the early-exercise boundary. The results indi-
cate that the computational burden is comparable,
so in the Bermudan case, the precision (including
bounds) of our method makes it very highly rec-
ommended, but if the pure American price is the
goal, then the choice is not so clear, as applying
our method would require Richardson extrapolation.
Computational comparisons with pricing via a bino-
mial lattice were similar to those of the previous
example; however, in terms of practical implemen-
tation, our algorithms have two important advan-
tages. First, lattice methods generally do not provide
any information on the level of precision of their

Figure 3 Convergence of Bounds for American Put Option �S0 = 100�
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estimates, while the secant and tangent algorithms
provide bounds. Second, our algorithms can provide
price estimates for any starting asset price in one pass
of the algorithm; i.e., each row in Tables 1 and 2 is
computed from a single recursion, whereas a lattice
method would require computation over a different
lattice for each starting price.

3.4. Merton Jump Diffusion
The jump-diffusion model from Merton (1976) can be
written as follows:

St+�t = h�Z�St�	

= Ste�r−
−2

2/2
�t+2√�tZ0+
∑N��t

j=1 �5Zj−52/2
� (26)

where Zj ∼ N�0�1
 i.i.d., N��t
 ∼ Poisson�6�t
,
the jump sizes are i.i.d. lognormally distributed:
LN�−52/2�52
, and r , 
, and 2 retain their defini-
tions from the geometric Brownian motion process
(23); here �= �r�
�2�5�6�. Merton (1976) derives the
following closed-form solution for the price of a Euro-
pean call option written on an asset following (26):

V E�S�x��
=
�∑
n=0

e−6��6�
n

n! V En �S�x��
� (27)

where V En �S�x��
 is the modified Black-Scholes for-
mula (24) with 22 replaced by 72n = 22+n52/�. Thus,
V E�S�x��
 is a weighted sum of Black-Scholes prices.
Further, by (27), the European call delta is given by

)

)S
V E�S�x��
 =

�∑
n=0

e−6��6�
n

n!
)

)S
V En �S�x��


=
�∑
n=0

e−6��6�
n

n! 4�an+2√�
� (28)
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Table 3 Bermudan Put Option on Asset Under Merton Jump Diffusion

N = 2, � = 1/4 N = 3, � = 1/6 N = 4, � = 1/8 N = 6, � = 1/12

Alg Price CPU Price CPU Price CPU Price CPU

Tan 8
612 0
04 8
684 1
62 8
720 2
80 8
756 4
85
Sec 8
614 0
03 8
686 1
19 8
725 1
85 8
765 3
24
Sim 8
597 (0.010) 27
90 8
678 (0.009) 41
73 8
715 (0.009) 50
30 8
753 (0.009) 69
40

Notes. S0 = 100, K = 100, T = 0
5, r = 0
1, � = 0
2828, �= 2, � = 0
2, N = number of exercise dates, “Sim”: simulation method,
standard error in parentheses, European price �N = 1�: $8.393.

where an is given by the expression for a in (24)
with 22 replaced by 72n = 22 + n52/�. Given (28)
and the multiplicity of the price process (26), the
three assumptions are satisfied and Propositions 7–12
apply; in particular, the secant and tangent algorithms
will provide upper and lower bounds, respectively,
on the true option prices.
Table 3 shows the results of applying our algo-

rithms to a six-month �T = 0�5
 put option writ-
ten on the jump-diffusion model without dividends
�
= 0
, r = 0�1, 2 = 0�2828, 6 = 2, 5 = 0�2� using 100
interpolating points per early-exercise date for each
algorithm and enough terms in the summations (27)
and (28) to bound the truncation errors to less than
10−4 and 10−6, respectively. For comparison, shown in
the row labeled “Sim” (standard errors in parenthe-
ses), are (biased low) prices obtained via a simula-
tion method in Grant et al. (1996), indicating that for
this example, simulation-based methods require sig-
nificantly more computation for a comparable level of
numerical precision.
The algorithms can also be used to price pure

(continuously exercisable) American options by using
Richardson extrapolation. Denoting Pi as the price of
the option with i exercise opportunities at �jT /i( j =
1� � � � � i� (P1 would correspond to the European
option), the three-point Richardson extrapolation is
given by P3 + 3�5�P3 − P2
 − 0�5�P2 − P1
, and the
four-point Richardson extrapolation is given by P4 +
29/3�P4 − P3
 − 23/6�P3 − P2
 + 1/6�P2 − P1
. Table 4

Table 4 Estimating (“Pure”) American Put Option
Price Under Merton Jump Diffusion

n Price CPU

Tan 3 8
83 1
7
4 8
83 4
5

Sec 3 8
83 1
2
4 8
86 3
1

Lattice (Amin) 5 8
03 0
02
10 8
68 0
05
20 8
78 0
35
50 8
83 4
9
100 8
84 43

Notes. S0 = 100, K = 100, T = 0
5, r = 0
1, � = 0
2828,
�= 2, � = 0
2, n: number of time steps in Amin lattice or
# points in Richardson extrapolation for Tan/Sec alg.

shows the results for the previous jump-diffusion
example, comparing with the lattice method of
Amin (1993). The algorithms are quite competitive
in terms of accuracy/computation trade-offs. The
upper and lower bounds also provide a guideline
for determining an appropriate number of interpola-
tion points, whereas determining when the number of
discretization time steps is sufficiently large in apply-
ing lattice methods is often arbitrary.

4. Conclusions
We presented a new approach to pricing American-
style derivatives through approximating the value
function with linear interpolation functions, which
converts the pricing of an American-style deriva-
tive to that of pricing a portfolio of European call
options (of varying strikes and maturities), and in
many cases obtain tight analytical upper and lower
bounds for the true price. Implementation is quite
modular, in that the same code can be used for
essentially any asset price model, simply by sub-
stituting the new European option price function
where it is called by the interpolation model. To
illustrate the approach, we applied our algorithms
to American call and put options written on under-
lying assets following geometric Brownian motion
and jump-diffusion processes. Relative to the existing
approaches of Amin (1993) and Huang et al. (1996),
our methods demonstrate that they are particularly
effective in the American-style setting for which they
are designed, but also offer a viable alternative for
continuously exercisable options when used with
Richardson extrapolation. Our methods can also eas-
ily handle pure jump processes (Laprise 2002). Laprise
(2002) also describes application to American-Asian
options, where the path-dependent payoff depends
on the current average of the stock price over a
specified duration (cf., Ben Ameur et al. 2002, Wu
and Fu 2003). However, extensions to derivatives on
more than one underlying random process, e.g., mul-
tiple assets or stochastic volatility, is an open research
problem.
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Appendix
The following is used in the proofs of Propositions 4 and 6:

Lemma A.1. Let Z be a random variable.
(a) Let g�·
 be convex. If either g�·
 is nondecreasing and

h�z� ·
 is convex ∀z, or g�·
 is nonincreasing and h�z� ·
 is con-
cave ∀z, then E�g�h�Z� ·

� is a convex function.
(b) Let g�·
 be concave. If either g�·
 is nondecreasing and

h�z� ·
 is concave ∀z, or g�·
 is nonincreasing and h�z� ·
 is con-
vex ∀z, then E�g�h�Z� ·

� is a concave function.

(In particular, if both g�·
 and h�z� ·
 are linear, then
E�g�h�Z� ·

� is also linear.)

Proof. We prove (a); the proof of (b) is nearly identical.
For 0≤ 6≤ 1 and any x, y, z,
6g�h�z�x

+ �1−6
g�h�z�y

 ≥ g�6h�z�x
+ �1−6
h�z�y



≥ g�h�z�6x+ �1−6
y

�
where the first inequality follows from the convexity of g
and the second inequality follows from either h�z� ·
 con-
vex and g�·
 nondecreasing, or h�z� ·
 concave and g�·
 non-
increasing. Combining the result with the linearity of the
expectation operator gives (a). �

Proof of Proposition 1. We prove the �≤
 case (the �≥

case is identical) by induction. Let i=N − 2. �VN−1 ≤ 	VN−1 =
VN−1 implies

	HN−2�S
 = e−r!E� �VN−1�SN−1
 � SN−2 = S�
≤ e−r!E�VN−1�SN−1
 � SN−2 = S�=HN−2�S
�

so 	VN−2 ≤ VN−2. By induction, 	Vi+1 ≤ Vi+1. As �Vi+1 ≤ 	Vi+1 ≤
Vi+1, we can similarly show 	Hi ≤Hi; hence 	Vi ≤ Vi. �

Proof of Proposition 2. First we establish the following
claim: For i = 0� � � � �N − 2, if � �Vi+1�S
 − Vi+1�S
� < :, then
� 	Vi�S
−Vi�S
�<:.
� 	Vi�S
−Vi�S
� = �max�L�S
� 	Hi�S

−max�L�S
�Hi�S

�

≤ � 	Hi�S
−Hi�S
�
= �e−r!E� �Vi+1�Si+1
−Vi+1�Si+1
 � Si = S��
≤ e−r!E�� �Vi+1�Si+1
−Vi+1�Si+1
� � Si = S�

(Jensen’s inequality)

< e−r!E�: � Si = S�≤ :�
Now we prove the proposition by induction. At i =N − 2,
� �VN−1�S
− VN−1�S
� < $N−1, which, with the claim, implies
� 	VN−2�S
−VN−2�S
�< $N−1. Assume the result holds for ti+1;
i.e., � 	Vi+1�S
 − Vi+1�S
� <

∑N−1
j=i+2 $j . Then, with � �Vi+1�S
 −

	Vi+1�S
�< $i+1, we have
� �Vi+1�S
−Vi+1�S
� = �� �Vi+1�S
− 	Vi+1�S

+� 	Vi+1�S
−Vi+1�S

�

≤ � �Vi+1�S
− 	Vi+1�S
� + � 	Vi+1�S
−Vi+1�S
�

< $i+1+
N−1∑
j=i+2

$j =
N−1∑
j=i+1

$j �

Thus, by the claim, � 	Vi�S
−Vi�S
�<
∑N−1
j=i+1 $j � �

Proof of Proposition 3. For ease of notation, we omit
“i” superscripts and subscripts. By (9), for S ≥ x0,

�V �S
=
n+1∑
j=1
�mj�S− xj−1
+ 	V �xj−1

1�xj−1 ≤ S < xj��

where 1�·� is the indicator function. As 1�xj−1 ≤ S < xj� =
1�S ≥ xj−1�− 1�S ≥ xj�,

�V �S
 =
n+1∑
j=1
�mj�S− xj−1
+ 	V �xj−1

1�S ≥ xj−1�

−
n+1∑
j=1
�mj�S− xj−1
+ 	V �xj−1

1�S ≥ xj�

= �m1�S− x0
+ 	V �x0

1�S ≥ x0�
+
n+1∑
j=2
�mj�S− xj−1
+ 	V �xj−1

1�S ≥ xj−1�

−
[
�mn+1�S− xn
+ 	V �xn

1�S ≥ xn+1�

+
n∑
j=1
�mj�S− xj−1
+ 	V �xj−1

1�S ≥ xj�

]

= ��m1−m0
�S− x0
+ 	V �x0

1�S ≥ x0�
− �mn+1�S− xn
+ 	V �xn

1�S ≥ xn+1�
+

n∑
j=1
�mj+1�S− xj 
+ 	V �xj 

1�S ≥ xj�

−
n∑
j=1
�mj�S− xj 
+ 	V �xj 

1�S ≥ xj�

= 	V �0
− �mn+1�S− xn
+ 	V �xn

1�S ≥ xn+1�
+

n∑
j=0
�mj+1−mj
�S− xj 
+� (29)

where in the third equality, m0 = 0 and mj�S − xj−1
 +	V �xj−1
=mj�S− xj 
+ 	V �xj 
.
Now for xn+1 < �, i.e., xn+1 = xn − 	V �xn
/mn+1 and

mn+2 = 0,
−�mn+1�S− xn
+ 	V �xn

 = −�mn+1�S− xn+1



= �mn+2−mn+1
�S− xn+1
�
and for xn+1 =�, 1�S ≥ xn+1�= 0. Thus, by (29),

�V �S
= 	V �0
+
n+1∑
j=0
�mj+1−mj
�S− xj 
+�

where, if xn+1 = �, the last term in the summation is
zero. �

Proof of Proposition 4. First, as 	V0 ≡ 	H0, 	H0 con-
vex implies 	V0 convex. Further, for i = 1� � � � �N − 1, as
	Vi�·
=max�L�·
� 	Hi�·

 and L�·
 is convex, 	Hi convex implies	Vi convex. Consider HN−1�x
 = e−r!E�L�SN 
 � SN−1 = x� =
e−r!E�L�h�Z�x�	

�� By Lemma A.1(a), HN−1 is convex
if either L�·
 is nondecreasing and h�Z� ·�	
 is convex,
or L�·
 is nonincreasing and h�Z� ·�	
 is concave. For i =
N − 1� � � � �1, assume 	Vi and h�Z� ·�	
 are convex, and
m
�i

ni+1 ≥m

�i

ni . By (11), 	Hi−1 is convex if

(a) m�i
1 E�Si �Si−1 = x� is convex; and
(b) for j = 1� � � � � n̄i, �m�i
j+1 −m�i
j 
V E�x�x�i
j � !
 is convex,

where n̄i = ni + 1 if x�i
ni+1 <�, and n̄i = ni otherwise.
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We first consider (b). The convexity of 	Vi implies that
m
�i

j+1 − m�i
j ≥ 0 for j = 1� � � � �ni − 1, which, with the pre-

vious assumption, implies the inequality for j = 1� � � � �ni.
If x�i
ni+1 < �, then m�i
ni+1 < 0 and m

�i

ni+2 = 0, which implies

that m�i
ni+2 >m
�i

ni+1. Therefore, m

�i

j+1−m�i
j ≥ 0 for j = 1� � � � � n̄i.

Next, if we let g�x
 = �x − x�i
j 
+ we have V E�·�x�i
j � !
 =
e−r!E�g�h�Z� ·�	

�. As g�·
 is convex and nondecreasing
and h�Z� ·�	
 is convex, by Lemma A.1(a), V E�·�x�i
j � !
,
hence �m�i
j+1−m�i
j 
V E�·�x�i
j � !
, for j = 1� � � � � n̄i, is convex.
For (a), if we let g�x
 = x, then E�Si � Si−1 = x� =

E�g�h�Z�x�	

�. By the convexity of h, Lemma A.1 implies
that E�Si �Si−1 = x� is convex. However, (a) requires convex-
ity of the product m�i
1 E�Si �Si−1 = x�, which is achieved if we
further require m�i
1 ≥ 0 or linearity of h, which would make
E�Si �Si−1 = x� linear, and hence the product linear. �

Proof of Proposition 5. The proof is nearly identical to
that for Proposition 3.

Proof of Proposition 6. The proof is nearly identical to
that for Proposition 4.

Proof of Proposition 7. Note that L�S
 = �S − K
+ is
convex and nondecreasing. The proof is via induction,
where we also prove 	Vi and 	Hi are convex, 	Vi�0
 = 0, and
) 	Hi�S
/)S ≤ e−
! .
For i=N −1, the claim is given by (18). Further, L�·
 con-

vex and nondecreasing and h�Z� ·�	
 convex by Assump-
tion 3 imply VN−1 and HN−1 are convex by Proposition 4.
Also,

VN−1�0
=HN−1�0
= V E�0�K�!
= 0
by Assumption 2, and

)

)S
HN−1�S
=

)

)S
V E�S�K�!
≤ e−
!

by Assumption 1. By induction, assume

	Vi+1�S
=
{ 	Hi+1�S
 if S < s̃∗i+1�
S−K if S ≥ s̃∗i+1�

for some finite s̃∗i+1, where 	Vi+1 ≥ Vi+1 and 	Hi+1 ≥Hi+1. Fur-
ther, assume 	Vi+1 and 	Hi+1 are convex, 	Vi+1�0
 = 0, and
) 	Hi+1�S
/)S ≤ e−
! .
Let x�i+1
n = s̃∗i+1 and m�i+1
n+1 = 1�0. We consider the proper-

ties of �Vi+1. First, 	Vi+1 ≥ 0 and 	Vi+1�0
= 0 imply m�i+1
1 ≥ 0.
Further, ) 	Hi+1�S
/)S ≤ e−
! implies m�i+1
n ≤ e−
! . Thus,
m
�i+1

n+1 ≥m�i+1
n . Hence, by Proposition 4, 	Vi and 	Hi are con-

vex. Next, as x�i+1
n = s̃∗i+1 and m�i+1
n+1 = 1�0, �Vi+1�S
= 	Vi+1�S
=
S−K for S > x�i+1
n . Thus, by Proposition 1 and the argument
in §2.1, 	Vi ≥ Vi and 	Hi ≥Hi.
Next, as x�i+1
0 = 0, 	Vi+1�0
= 0, and m�i+1
n+1 ≥ 0, by (11),

	Hi�S
=
n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

)
V E

(
S�x

�i+1

j � !

)
�

In particular, by Assumption 2, 	Vi�0
= 	Hi�0
= 0. Now, 	Vi+1
convex implies m�i+1
j+1 ≥ m�i+1
j for j = 1� � � � �n − 1, and as
m
�i+1

1 ≥ 0=m�i+1
0 and m�i+1
n+1 ≥m�i+1
n , the coefficients in the

summation are all positive. Further, by Assumption 1,

)

)S
	Hi�S
 =

n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

) )
)S
V E

(
S�x

�i+1

j � !

)

≤ e−
!
n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

)= e−
! �

Next, we note that for S <K, L�S
= 0 implies 	Vi�S
= 	Hi�S
.
Thus, as ) 	Hi�S
/)S is bounded above by a value strictly
smaller than 1 (because 
 > 0) and )�S − K
/)S = 1, there
exists a unique, finite s̃∗i > K such that L�s̃∗i 
 = 	Hi�s̃∗i 
 and
L�S
 < �>
 	Hi�S
 for S < �>
s̃∗i ; i.e.,

	Vi�S
=
{ 	Hi�S
 if S < s̃∗i �
S−K if S ≥ s̃∗i �

This completes the proof of the induction step and thus the
proposition. �

Proof of Proposition 8. Proposition 7 and the conver-
gence of 	Hi to Hi imply that the true optimal policy is a
threshold policy. Noting that Hi�S
 ≥ S − K for S ≤ s∗i and
Hi�s

∗
i 
 = s∗i − K, 	Hi�s∗i 
 ≥ s∗i − K from Proposition 7, which

implies s̃∗i ≥ s∗i . �

Proof of Proposition 9. The proof is via induction
where we also prove 	Vi and 	Hi are convex, 	Vi�0
 = 0, and
) 	Hi�S
/)S ≤ e−
! .
For i=N −1, the claim of the proposition is given by (18),

and VN−1 and HN−1 convex, VN−1�0
= 0, and )HN−1�S
/)S ≤
e−
! are shown in the proof of Proposition 7.
By induction, assume

	Vi+1�S
=



	Hi+1�S
 if S < s̃∗i+1�

S−K if S ≥ s̃∗i+1�

for some finite s̃∗i+1 ≤ s∗i+1, where 	Vi+1 ≤ Vi+1 and 	Hi+1 ≤Hi+1.
Further, assume 	Vi+1 and 	Hi+1 are convex, 	Vi+1�0
= 0, and
) 	Hi+1�S
/)S ≤ e−
! .
Let x�i+1
n = s̃∗i+1, m�i+1
n = ) 	Hi+1�S
/)S�S=x�i+1
n

, and m�i+1
n+1 =
1�0. We consider the properties of �Vi+1�·
. First, ) 	Hi+1�S
/
)S ≤ e−
! implies m�i+1
n ≤ e−
! . Thus, m�i+1
n+1 ≥ m

�i+1

n . As

m
�i+1

0 = 0 and h�Z� ·�	
 is convex by Assumption 3, 	Vi and	Hi are convex by Proposition 6. Next, as x�i+1
n = s̃∗i+1 and

m
�i+1

n+1 = 1�0, �Vi+1�S
= 	Vi+1�S
 for S > x�i+1
n . Thus, by Propo-

sition 1 and the argument in §2.2, 	Vi ≤ Vi and 	Hi ≤Hi.
We now consider 	Hi given by (13). First, as m�i+1
0 = 0 and

m
�i+1

n+1 ≥ 0, the first and last terms of the summation in (13)

are zero. Thus, as x�i+1
0 = 0 and 	Vi+1�0
= 0, we have

	Hi�S
=
n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

)
V E

(
S�y

�i+1

j � !

)
�

In particular, by Assumption 2, 	Vi�0
= 	Hi�0
= 0. Now, 	Hi+1
convex implies m�i+1
j+1 ≥ m�i+1
j for j = 0� � � � �n − 1, and as
m
�i+1

n+1 ≥m�i+1
n , the coefficients in the summation are all pos-

itive. Further, by Assumption 1,

)

)S
	Hi�S
 =

n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

) )
)S
V E

(
S�y

�i+1

j � !

)

≤ e−
!
n∑
j=0

(
m
�i+1

j+1 −m�i+1
j

)= e−
! �
Next, we note that for S <K, L�S
= 0 implies 	Vi�S
= 	Hi�S
.
Therefore, as ) 	Hi�S
/)S is bounded above by a value strictly
smaller than 1 and )�S − K
/)S = 1, there exists a unique,
finite s̃∗i > K such that L�s̃∗i 
 = 	Hi�s̃∗i 
 and L�S
 < �>
 	Hi�S
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for S < �>
s̃∗i ; i.e.,

	Vi�S
=



	Hi�S
 if S < s̃∗i �

S−K if S ≥ s̃∗i �
Now consider s∗i . Hi�S
≥ S−K for S ≤ s∗i and Hi�s∗i 
= s∗i −K.
Thus, 	Hi�s∗i 
 ≤ s∗i − K, implying s̃∗i ≤ s∗i . This completes the
proof of the induction step. �

Proof of Proposition 10. We first note that L�S
 =
�K−S
+ is convex and nonincreasing, and h�Z� ·�	
 is both
convex and concave. The proof is via induction where we
also prove 	Vi and 	Hi are convex, 	Vi�0
 = K, and −e−
! ≤
) 	Hi�S
/)S ≤ 0.
For i=N − 1, the proposition claim is given by (20). Fur-

ther, L�·
 convex and nonincreasing and h�Z� ·�	
 concave
imply VN−1 and HN−1 convex by Proposition 4. By (19),

)

)S
HN−1�S
=−e−
! + )

)S
V E�S�K�!
�

Thus, by Assumption 1, −e−
! ≤ )HN−1�S
/)S ≤ 0. Finally,
by (20), VN−1�0
= L�0
=K.
By induction, assume

	Vi+1�S
=


K− S if S < s̃∗i+1�

	Hi+1�S
 if S ≥ s̃∗i+1�
for some s̃∗i+1, where 	Vi+1 ≥ Vi+1 and 	Hi+1 ≥ Hi+1. Further,
assume 	Vi+1 and 	Hi+1 are convex, 	Vi+1�0
= K, and −e−
! ≤
) 	Hi+1�S
/)S ≤ 0.
Let x�i+1
1 = s̃∗i+1, m�i+1
1 =−1�0, and m�i+1
n+1 = 0. We consider

the properties of �Vi+1. First, ) 	Hi+1�S
/)S ≤ 0 implies m�i+1
j ≤
0 for j = 2� � � � �n. Thus, m�i+1
n+1 ≥m�i+1
n . Hence, as h�Z� ·�	

is linear, 	Vi and 	Hi are convex by Proposition 4. Next, for
S > x

�i+1

n , 	Vi+1�S
= 	Hi+1�S
 implies ) 	Vi+1�S
/)S ≤ 0. Thus, as

m
�i+1

n+1 = 0, �Vi+1�S
≥ 	Vi+1�S
 for S > x�i+1
n . Thus, by Proposi-

tion 1 and the argument in §2.1, 	Vi ≥ Vi and 	Hi ≥Hi.
As x�i+1
0 = 0, 	Vi+1�0
 = K, m�i+1
n+1 = 0, m�i+1
1 = −1�0,

m
�i+1

0 = 0, V E�S�0� !
= Se−
! ,
	Hi�S
=Ke−r! − Se−
! +

n∑
j=1

(
m
�i+1

j+1 −m�i+1
j

)
V E

(
S�x

�i+1

j � !

)

by (11). In particular, by Assumption 2, 	Hi�0
=Ke−r! ≤K =
L�0
, which implies that 	Vi�0
=K. Now, 	Vi+1 convex implies
m
�i+1

j+1 ≥m�i+1
j for j = 1� � � � �n− 1, and as m�i+1
n+1 ≥m�i+1
n , the

coefficients in the summation are all positive. Further,

)

)S
	Hi�S
=−e−
! +

n∑
j=1

(
m
�i+1

j+1 −m�i+1
j

) )
)S
V E

(
S�x

�i+1

j � !

)
�

Noting that m�i+1
n+1 = 0 and m
�i+1

1 = −1�0, Assumption 1

implies that −e−
! ≤ ) 	Hi�S
/)S ≤ 0.
Next, for S ≥K, 	Hi�S
 > L�S
= 0; i.e., 	Vi�S
= 	Hi�S
. Thus,

as 	Hi�0
 ≤ L�0
 and ) 	Hi�S
/)S ≥ −1, there exists an s̃∗i < K
such that 	Hi�S
 < �≥
L�S
 for S < �≥
s̃∗i ; i.e.,

	Vi�S
=


K− S if S < s̃∗i �

	Hi�S
 if S ≥ s̃∗i �
where s̃∗i > 0 unless r = 0. This completes the proof of the
induction step. �

Proof of Proposition 11. Proposition 10 and the con-
vergence of 	Hi to Hi imply that the true optimal policy is
a threshold policy. Noting that Hi�S
≥K − S for S ≥ s∗i and
Hi�s

∗
i 
= K − s∗i , 	Hi�s∗i 
 ≥ K − s∗i from Proposition 10, which

implies s̃∗i ≤ s∗i . �

Proof of Proposition 12. The proof is very similar to
that of Propositions 9 and 10.
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